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A B S T R A C T   

Vectorized reconstruction from indoor point cloud has attracted increasing attention in recent years due to its 
high regularity and low memory consumption. Compared with aerial mapping of outdoor urban environments, 
indoor point cloud generated by LiDAR scanning or image-based 3D reconstruction usually contain more clutter 
and missing areas, which greatly increase the difficulty of vectorized reconstruction. In this paper, we propose an 
effective multistep pipeline to reconstruct vectorized models from indoor point cloud without the Manhattan or 
Atlanta world assumptions. The core idea behind our method is the combination of a sequence of 2D segment or 
cell assembly problems that are defined as global optimizations while reducing the reconstruction complexity 
and enhancing the robustness to different scenes. The proposed method includes a semantic segmentation stage 
and a reconstruction stage. First, we segment the permanent structures of indoor scenes, including ceilings, 
floors, walls and cylinders, from the input data, and then, we reconstruct these structures in sequence. The 
floorplan is first generated by detecting wall planes and selecting optimal subsets of projected wall segments with 
Integer Linear Programming (ILP), followed by constructing a 2D arrangement and recovering the ceiling and 
floor structures by Markov Random Filed (MRF) labeling on the arrangement. Finally, the wall structures are 
modeled by lifting each edge of the arrangement to a proper height by means of another global optimization. 
Merging the respective results yields the final model. The experimental results show that the proposed method 
could obtain accurate and compact vectorized models on both precise LiDAR data and defect-laden MVS data 
compared with other state-of-the-art approaches.   

In recent years, 3D reconstruction of indoor environments has 
attracted increasing attention due to its great potential for indoor nav-
igation, Building Information Modeling (BIM), virtual reality, and so on. 
Compared with outdoor urban reconstruction (Musialski et al., 2013), 
the structure of indoor environments is more complex and contains a 
large amount of clutter and occlusions, which make it difficult to 
reconstruct a complete and accurate model. Over the past few decades, 
many methods have been developed to reconstruct indoor models, such 
as 2D architectural drawing-based methods (Lee et al., 2008; Horna 
et al., 2009; Li et al., 2010). However, it is difficult for these methods to 
achieve full automation, and the robust reconstruction of indoor scenes 
with varying complexity is still a challenging task. 

LiDAR point cloud and image-based point cloud are two commonly 
used types of data in 3D reconstruction. The former can be obtained by 
laser scanning with high precision and high density. However, the point 
cloud obtained by LiDAR (such as Velodyne) contains only geometry 
information and the device cost varies greatly with the measurement 
resolution, measurement accuracy and number of beams. In addition, 
RGB-D sensors (such as Kinect) are also used to generate dense point 
cloud, which need low device cost while the measure distance is short 
and thus it will be cumbersome and time-consuming to scan large-scale 
scenes. In contrast, Structure-from-Motion (SfM) (Schonberger and 
Frahm, 2016; Cui et al., 2017) and Multi-View-Stereo (MVS) 
(Schönberger et al., 2016; Shen, 2013) can generate point cloud from 
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massive images with rich texture information at a low equipment cost. 
Besides, the image data can be collected efficiently, such as low-cost 
crowdsourced data collection, and this data source is what we are con-
cerned more about. Considering that the dense point cloud obtained by 
different methods always lacks topological relationships and inevitably 
includes outliers and holes, especially for MVS points, it is more 
reasonable and more common to represent objects with a triangular 
mesh surface. Traditional surface reconstruction methods (Kazhdan 
et al., 2006; Vu et al., 2011) aim to generate surface models with dense 
facets as accurately as possible. Nevertheless, this representation is still 
redundant and lacks the structural and semantic information of the 
scenes, which hinders its applications in many modern systems, such as 
navigation services that require lightweight model storage. Considering 
the above problems, lots of approaches have been developed to generate 
vectorized models that are mainly represented by compact polygons 
(Previtali et al., 2014; Yu et al., 2021; Tran and Khoshelham, 2019; 
Thomson and Boehm, 2015; Becker et al., 2015; Wang et al., 2017; Tran 
et al., 2018; Previtali et al., 2018). In these methods, many (Tran et al., 
2018; Previtali et al., 2018) are based on the Manhattan or Atlanta world 
assumptions, which are common in scene reconstruction. The former 
term assumes that the scene has only three orthogonal directions, and 
the latter term defines a vertical direction and a set of directions 
orthogonal to it, which can represent wider scenes. These assumptions 
simplify the problem and enhance the model regularity, but they limit 
the generalization of the methods. In addition, the Levels of Detail 
(LoDs) defined by CityGML (Kutzner et al., 2020) provides a progressive 
vectorized reconstruction of models, which has become a data standard 
for many applications. 

This paper proposes a complete multistep pipeline to reconstruct 
vectorized LoD2 indoor buildings that confirm to CityGML 3.0 (Kutzner 
et al., 2020), and Fig. 1 is an example of LoDs. Unlike general recon-
struction in 3D space, we decompose the 3D reconstruction problem into 
a sequence of 2D segment or cell assembly problems, and we unify the 
3D shape detection and 2D energy optimization into a framework. 
Considering that indoor scenes always have complex structures and 
contain a large amount of clutter and many occlusions, we first segment 
the permanent structures of the scenes, including the floors, ceilings, 
cylinders and walls, from the input point cloud. Next, we model these 
structural elements in sequence. Based on the key observations that 
indoor scenes are mainly composed of piecewise planar structures and 
the walls are perpendicular to the ground in most scenes, we detect wall 
planes, project them to the ground plane and generate the floorplan from 
the wall candidate segments. Then, we construct a 2D arrangement 
based on the floorplan and perform Markov Random Field (MRF) opti-
mization to reconstruct the floor and ceiling models. The cylinder model 
is recovered by representing the detected cylinders from input with 
regular octahedra. Finally, the wall model can be obtained by lifting 
edges of the 2D arrangement to the correct heights. Merging all of the 
structural results obtains the final model. The main contributions of our 
work are as follows: 

• Propose a multistep and versatile indoor LoD2 vectorized recon-
struction pipeline without the Manhattan or Atlanta world 

assumptions, taking the 3D shape detection and 2D energy optimi-
zation into a uniform framework and having the ability to address 
various indoor scenes with different characteristics, especially 
including complex ceiling and floor structures.  

• Decompose the 3D reconstruction problem into a sequence of 2D 
segment or cell assembly sub-problems by means of semantic seg-
mentation, which reduces the complexity of the reconstruction. Each 
sub-problem is defined as a global optimization that can be solved 
effectively. A combination of each of the results can generate a 
reasonable and consistent final model.  

• By using multiple energy terms (point supporting, coverage, 
planarity, etc.) in the optimization function and introducing prior 
rules as constraints, each stage in the proposed method is designed to 
have good robustness to noise and missing areas in the point cloud, 
which makes the proposed pipeline suitable for processing both the 
precise LiDAR data and defect-laden MVS data. 

1. Related work 

Recently, a considerable amount of work has been performed to 
reconstruct indoor environments in photogrammetry, computer vision 
and computer graphics, and detailed reviews can be found in (Pintore 
et al., 2020; Kang et al., 2020). In addition, an thorough survey of sur-
face reconstruction methods by prior can be found in (Berger et al., 
2017). Here, we focus more on the vectorized model surface recon-
struction, and we review studies that are relevant to ours, covering 
polygonal structure modeling, room floorplan estimation and mesh 
simplification. 

1.1. Polygonal structure modeling 

Considering that man-made objects such as buildings usually have 
strong structural characteristics, a large amount of work has focused on 
extracting the structural elements of indoor scenes and representing 
models with polygons. Generally, there are two main types of structural 
elements: geometric elements (e.g. plane, line, corner) and semantic 
elements (e.g. wall, roof).Geometric elements-based modeling. Since indoor 
buildings are mainly composed of piecewise planes, many methods 
extract plane elements from the scene and recover final models by 
choosing appropriate candidate faces or space cells (Ochmann et al., 
2016; Ochmann et al., 2019; Cui et al., 2019; Li et al., 2019; Wang et al., 
2020; Tran and Khoshelham, 2020; Oesau et al., 2014; Previtali et al., 
2018). Ochmann et al. constructed a planar graph by intersecting wall 
centerlines, which are obtained by wall candidate plane projections, and 
performed room labeling on the graph with an energy minimization 
approach to obtain the final model (Ochmann et al., 2016). This method 
needed indoor scans to provide initial point cloud segmentation and did 
not support multi-story buildings. Later, Ochmann et al. solved these 
problems by applying prior-free Markov Clustering (vanDongen, 2000) 
to cluster point cloud and intersecting all of the wall and slab candidates 
in 3D space (Ochmann et al., 2019). With the Manhattan world 
assumption, Cui et al. detected horizontal ceilings and floors according 
to the density histogram of the z coordinates and used visibility analysis 
to segment individual rooms. Finally, the models are reconstructed with 
multi-label graph cuts (Cui et al., 2019). The above methods converted 
the modeling problem into a cell labeling problem in which the room 
segmentation was important information, while they did not consider 
complex roof and floor structures, such as sloping structures. Discarding 
the previous assumptions, Nan et al. proposed a general pipeline in 
which plane elements were detected from the point cloud and used to 
slice 3D space into convex polyhedra, followed by selecting polygon 
faces to assemble the final model (Nan and Wonka, 2017). Recently, 
Bauchet et al. introduced a kinetic data structure to dynamically inter-
sect the 3D space, which led to a lighter yet efficient partition (Bauchet 
and Lafarge, 2020). Our work is most closely related to this section. Fig. 1. An example of indoor LoDs (Billen et al., 2012) defined. in CityGML 3.0.  
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Compared with the above methods, the proposed method in this paper is 
a general vectorized reconstruction method to deal with point cloud 
obtained by different devices. we disassembled the 3D reconstruction in 
indoor environments into segment selection and cell labeling optimi-
zation sub-problems in lower 2D space without the Manhattan or 
Atlanta world assumptions and included the ability to address complex 
ceiling and floor structures. 

Recently, Liu et al. introduced an end-to-end deep network archi-
tecture to obtain a wireframe model from point cloud (Liu et al., 2021). 
They first detected patches that may contain a corner and then predicted 
corner positions from patches, followed by detecting edges from many 
pairs of vertices. This method made full use of high-level point features 
and was the first to generate a vectorized wireframe model through the 
end-to-end strategy. However, this method was affected by the quality of 
the point cloud, and the inevitable noise and missing areas in point cloud 
may reduce the quality of the reconstructed models.Semantic elements- 
based modeling. Generally, indoor environments contain semantic 
structures such as ceilings, walls and floors in each room that can be 
used to recover building models. Mura et al. converted point cloud into a 
semantically richer adjacency graph and selected permanent compo-
nents based on the structural paths in 3D, followed by volumetric seg-
mentation to reconstruct the rooms (Mura et al., 2016). Ikehata et al. 
represented the indoor scene as a structure graph, where the nodes 
corresponded to some elements such as walls, and they conducted re-
constructions by applying a sequence of structure grammars (Ikehata 
et al., 2015). 

1.2. Room floorplan estimation 

Wall structures are always the focus of indoor reconstruction due to 
their complexity, and they are usually represented by 2D floorplans, 
which can be obtained from point cloud (Phalak et al., 2020; Liu et al., 
2018; Chen et al., 2019) or images (Zeng et al., 2020; Sun et al., 2019; 
Yang et al., 2019) and can express vectorized LoD0 models (outline the 
building footprint). Liu et al. predicted the pixel-wise geometric and 
semantic information through three network branches, and the floor-
plan meeting the constraint conditions was obtained through Integer 
Programming (Liu et al., 2018). They exchanged intermediate features 
between different branches and made full use of the whole network 
architectures; however, this method was more suitable for the Man-
hattan world scenes. Chen et al. discarded the Manhattan limit, inferred 
the room segmentation and corners/edges likelihood using two net-
works and obtained the floorplan using a global graph optimization 
(Chen et al., 2019). Later, Phalak et al. performed room and wall clus-
tering using a deep network and predicted the room perimeters using 
procedural algorithms on each room individually (Phalak et al., 2020), 
which was a local problem and could be processed in parallel. Different 
from using 3D point cloud, Sun et al. took a single-view panoramic 
image as input, used a recurrent neural network to capture global in-
formation and encoded layouts as three 1D vectors, which required 
fewer computation resources (Sun et al., 2019). Our pipeline can 
generate a vectorized LoD2 model while also providing the floorplan 
information. Compared with the above methods, we mainly used the 
geometric features of the point cloud and were less dependent on the 
contents and styles of the input data, which, however, is an important 
problem that may affect the results of the learning-based methods. 

1.3. Mesh simplification 

Instead of directly generating compact polygon representations, 
much work has obtained simplified models by reducing the number of 
facets of dense meshes, especially in computer graphics (Garland and 
Heckbert, 1997; Cohen-Steiner et al., 2004; Salinas et al., 2015; Bouzas 
et al., 2020; Li and Nan, 2021). Garland et al. iteratively contracted 
vertex pairs and tracked surface error approximations using quadric 
matrices (Garland and Heckbert, 1997). Steiner et al. repeatedly 

clustered facets into best-fitting regions to reduce the distortion error 
with the help of geometric proxies (Cohen-Steiner et al., 2004). Salinas 
et al. performed greedy mesh decimation by edge collapsing while 
preserving the model structures using planar proxies (Salinas et al., 
2015). Compared with direct polygon generation methods, these mesh 
reduction methods can also yield the compact models; however, the 
regularity of their results may not be as good as the direct methods. 

2. Methods 

Fig. 2 illustrates the workflow of the proposed method. The proposed 
multistep framework takes point cloud obtained by LiDAR or MVS as 
input and outputs compact polygonal models that confirm to CityGML 
LoD2 and have no overhang structures. This method consists of two 
main stages: semantic segmentation and LoD reconstruction. The point 
cloud of the permanent structures, including ceilings, floors, walls and 
cylinders, is first segmented from input data by means of normal in-
formation or semantic segmentation networks. Then, with the 
segmented point cloud, the LoD reconstruction can be performed by the 
following three key steps:  

1. Floorplan generation. The wall planes are detected from wall point 
cloud and are projected onto the ground to slice the ground plane 
into 2D cells. Then, the floorplan can be obtained by selecting a set of 
cell edges via Integer Linear Programming (ILP).  

2. Non-wall structure reconstruction. Considering that the ceilings and 
floors may consist of several planes with different heights and 
complex structures, we first detect the ceiling and floor planes from 
the corresponding point cloud and project the plane intersection 
lines onto the floorplan to construct a 2D arrangement. Then, we 
perform ceiling and floor plane labeling on the arrangement 
respectively using MRF optimization. Extruding the arrangement of 
the cells to their label planes gives the ceiling and floor models. The 
cylinder model can be obtained by detecting cylinder structures from 
semantic point cloud and representing them with regular octahedra.  

3. Wall structure reconstruction. Because the walls may contain different 
heights, we use the ceiling and floor label assignments and wall point 
cloud to help restore the wall structure. And the wall model can be 
obtained by selecting the optimal edges of arrangement cells via ILP 
and lifting them to proper heights. 

Finally, the LoD2 model can be generated by merging the wall and non- 
wall reconstruction results. In the following sections, these steps will be 
described in detail. 

2.1. Scene segmentation 

To obtain vectorized models with semantic information, we segment 
permanent structures, including ceilings, floors, walls and cylinders, 
from the input data. First, the indoor point cloud is aligned to the 
building reference coordinates, where the Z-axis is perpendicular to the 
ground plane. Then, we use different segmentation methods to address 
the LiDAR and MVS data. 

2.1.1. Segmentation on the LiDAR data 
LiDAR data here mainly include pure LiDAR point cloud without 

image information. Considering the high precision and high density of 
the LiDAR data, we mainly use the geometric attributes, such as normal 
information, to segment it. Specifically, the vertical and horizontal point 
cloud are first separated by selecting points whose normals are nearly 
perpendicular to the Z-axis and nearly parallel to the Z-axis with the 
deviation no more than a predefined threshold threang. Then, we use the 
K-nearest neighbors (KNN) of each point in the vertical point cloud to 
compute its curvature and select points whose curvatures are less than 
threk as the wall points with the remaining points taken as cylinder 
points. After obtaining the wall point cloud, we compute the mean 

J. Han et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 57–74

60

height H of the points and segment the ceiling points whose heights are 
higher than the H from the horizontal point cloud, with the remaining 
points taken as floor points. In view of the fact that the ceilings and 
floors may contain slanted planes, we detect planes from the original 
point cloud except for the vertical and horizontal points using RANSAC 
(Schnabel et al., 2007). Then, we compute the average height of the 
supporting point set that corresponds to each detected plane and add the 
supporting point sets whose average height is higher than H to the 
ceiling point cloud; in addition, we add the point sets whose average 
height is lower than H to the floor point cloud. In our experiments, the 
threshold threang is set to 5◦,K is set to 10, and threk is set to 1. Fig. 3 
displays the segmentation results on a LiDAR dataset used in our ex-
periments. In addition to using the geometric attributes of the LiDAR 
point cloud to segment the indoor scenes, some 3D convolutional neural 
networks (CNNs) (Qi et al., 2017a; Qi et al., 2017b) can also be used for 
point cloud segmentation. However, currently, the 3D CNNs are more 
suitable for the recognition or segmentation of single small objects, and 
when addressing large-scale scenes, these 3D networks usually need 
large amounts of training data for successful generalization, which is a 
hard labor-intensive task. 

2.1.2. Segmentation on the MVS data 
Compared with precise LiDAR point cloud, MVS point cloud inevi-

tably contains outliers, noise and missing parts, especially for indoor 
scenes with a large number of weak texture areas, which makes seg-
mentation using only geometric features unreliable. Considering that 
the point-meshing algorithm has a certain ability to filter out outliers 
and repair holes, and that the camera’s intrinsic (focal length, principle 
point, distortions) and extrinsic (camera 6-DOF poses) parameters are 

calibrated as a by-product during SfM and MVS, we transform the MVS 
point cloud into a triangular mesh using visibility-based meshing (Vu 
et al., 2011) in most cases and Poisson Surface Reconstruction (PSR) 
(Kazhdan et al., 2006) when visibility information is not available, and 
we perform segmentation on this mesh by making full use of the cali-
brated images. Here, we adopt the mature 2D image segmentation 
network, and use a Segmentation-Fusion scheme similar to (Zhou et al., 
2018) to perform the segmentation on MVS meshes, which considers the 
2D semantic results and 3D geometry information. Specifically, we use 
DeepLabv3 (Chen et al., 2018) pretrained on Cityscapes (Cordts et al., 
2016) as our segmentation network and fine-tune it individually on each 
scene due to the complex structures of indoor scenes. For each scene, the 
last layer of weights in the network is dropped, and we manually select 
and annotate dozens of images that cover different areas of the scene and 
contain different semantic objects with five categories ls = {ceiling,floor,
wall, cylinder, others}. Then, we use these training data to fine-tune the 
network, followed by inputting all of the images of the scene into the 
network to obtain their pixelwise semantic segmentation results. Next, 
we backproject the 2D segmented results on the mesh using the image 
calibration parameter and compute the probability that each facet on 
the mesh belongs to each label according to its received 2D information. 
Based on the observation that adjacent facets are more likely to have the 
same label, we transform the 3D segmentation into an MRF optimiza-
tion. Specifically, we introduce an objective function that includes a 
data term and a smooth term to evaluate the energy of the 3D mesh 
segmentation. The data term is defined on each facet as the negative 
label probability, and the smooth term is defined on each pair of adja-
cent facets and represents the adjacent similarity measured by the facet 
normals. The smaller the angle between the normals of adjacent facets, 
the higher the similarity is. The MRF optimization is to find a label 
configuration on all of the facets to minimize the above energy function, 
which corresponds to good segmentation results. This minimization 
problem can be solved by the graph-cut (Boykov et al., 2001; Boykov 
and Kolmogorov, 2004) algorithm. After obtaining the facet labels, we 
segment the mesh into different semantic blocks according to these la-
bels and then uniformly resample each segmented mesh block to obtain 
different dense point cloud. Fig. 4 displays the segmentation results on 
an MVS dataset used in our experiments. 

Fig. 2. Overview of the proposed method. There are two stages in the method: semantic segmentation and LoD reconstruction. The latter includes floorplan gen-
eration, non-wall structure reconstruction and wall structure reconstruction, which are highlighted with orange, green and blue respectively. 

Fig. 3. Scene segmentation on Mimap_bim_00 scene (LiDAR point cloud). (a) is 
the original point cloud, (b) is the segmented wall point cloud, and (c) is the 
segmented ceiling and floor point cloud. 
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Note that the quality of the above 3D segmentation is affected by the 
quality of the 2D image segmentation, which is mainly related to the 
number of annotated training images. However, depending on redun-
dant information from multiple perspectives and the MRF optimization, 
the 3D segmentation results are relatively reasonable. In addition, our 
experiments show that the subsequent LoD reconstruction stage is 
relatively robust for segmentation, and a certain error in the segmen-
tation result is tolerable, which means that we do not need to manually 
annotate an excessively large number of images for each scene. In our 
experiments, it is sufficient to select 25–30 training images on the scene 
with complex housing patterns, and 5–8 training images are sufficient 
on the other scenes. 

2.2. Floorplan Generation 

After obtaining the segmented point cloud, we reconstruct the ceil-
ing, floor, cylinder and wall models in sequence, followed by merging 
them to generate the final model. Compared with ceilings and floors, the 
wall structures in the indoor scenes are more difficult to recover due to 
their complexity. Based on the observation that walls are perpendicular 
to the ground in most scenes (the same expression with the LoD2 wall in 
CityGML 3.0 (Kutzner et al., 2020)] and the z coordinates only contain 
height information, we project the vertical walls onto the ground plane 
and focus on the floorplan generation in 2D space. Compared with direct 
extraction in 3D space (Nan and Wonka, 2017), extracting the floorplan 
in 2D could significantly reduce the computational complexity and 
improve the robustness. The generated floorplan can greatly assist with 
the reconstruction of the ceilings, floors and walls. Specifically, there are 
two core steps in generating the floorplan: wall candidate segment 
generation and wall segment selection. 

2.2.1. Wall candidate segment generation 
We detect planes from wall point cloud using RANSAC (Schnabel 

et al., 2007) implemented in CGAL (The CGAL Project, 2019) with the 
regularization angle threang and leave nearly vertical planes with a de-
viation of no more than threang as wall planes, which are attached with a 
set of supporting points. Then, we project the detected wall planes onto 
the ground and project the corresponding 2D supporting points (ignore z 
coordinates, hereinafter the same.) onto the wall projection lines to 
generate the wall segments by taking the projected 2D supporting points 
at the boundary as their vertices, as shown in Fig. 5(a). 

After obtaining the wall segments, we extend their vertices and 
intersect them into more shorter segments with their bounding box as 
constraints. Due to the noise and missing areas in the point cloud, 
especially in the MVS data, RANSAC can detect some unsatisfactory 
planes. Thus, it is necessary to refine the wall segments to obtain a 
cleaner result with more regularity. Specifically, two wall segments wi 
and wj are to be merged if the following two conditions are met:  

1. The angle between the directions of wi and wj is less than threang2  
2. The number of common supporting points of wi and wj is greater than 

threnum(wi,wj)

The merged new segment wn is determined by passing through a point pn 

with the direction wn
̅→: 

pn =
‖ wi ‖

‖ wi ‖ + ‖ wj ‖
Mid

(

wi

)

+
‖ wj ‖

‖ wi ‖ + ‖ wj ‖
Mid

(

wj

)

. (1)  

wn
̅→ =

wi
→+ wj

→

‖ wi
→+ wj

→ ‖ .
(2)  

where Mid(wi) is the middle point of segment wi. We merge the sets of 
the supporting points of segments wi and wj as the set of supporting 
points of segment wn, and the vertices of segment wn are computed as 
described above. 

We iteratively regularize the wall segments according to the above 
criteria until no segment pair satisfies the conditions. Then, the wall 
candidate segments are obtained by extracting short segments from 
regularized wall segment intersections, as shown in Fig. 5(b), and we 
will select a portion of them to generate the floorplan in the next step. In 
our experiments, the threshold threang is set to 5◦, the threshold threang2 is 
set to 15◦ and the threshold threnum(wi,wj) = threnum⋅min(

⃒
⃒P(wi)

⃒
⃒,
⃒
⃒P(wj)

⃒
⃒)

where the threnum is set to 10 and the min(
⃒
⃒P(wi)

⃒
⃒,
⃒
⃒P(wj)

⃒
⃒) is the smaller 

number of supporting points of segments wi and wj. 

2.2.2. Wall segment selection 
Given a set of wall candidate segments {si} with their 3D supporting 

points {P(si)}, we aim to select an appropriate subset of them to generate 
the closed floorplan via a global energy optimization approach. Specif-
ically, we introduce an integer variable xi to the ith candidate with the 
meaning that xi = 1 represents that the candidate is selected and xi = 0 
represents that it is not selected, and we define three energy terms 
similar to (Nan and Wonka, 2017) on each candidate, including the 
point supporting term S, point coverage term C and model complexity 
term M. In addition, we define X = {xi} and the total energy function E: 

E = λ1⋅S+ λ2⋅C + λ3⋅M (3)  

where λ1, λ2, λ3 are balance parameters. By solving the segment selection 
problem by minimizing the above energy formulation, the floorplan is 
obtained by putting all candidates with xi = 1 together after optimiza-
tion.Point supporting in Eq. (3). This term is used to measure how reliable 
a wall candidate segment is that is selected, and the higher the support is 
(which corresponds to the a lower S), the more likely the candidate is to 
be in the solution: 

Fig. 4. Scene segmentation on Office_MVS scene (MVS point cloud). (a) is the 
MVS point cloud, (b) is the reconstructed triangular mesh using visibility-based 
meshing (Vu et al., 2011, (c) is the segmented wall point cloud, and (d) is the 
segmented ceiling and fl.oor point cloud. 

Fig. 5. Floorplan generation on Church_LiDAR scene. (a) is the detected initial 
wall segments. (b) is the wall candidate segments by extending and regularizing 
(a). And (c) is the floorplan by selecting the optimal subset of (b) by means 
of ILP. 
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S = 1 −
1
|P|

∑

xi∈X

⎛

⎜
⎜
⎜
⎜
⎝

∑

‖p,si‖<ε
p∈Ṗ(si)

1 −
‖ p, si ‖

ε

⎞

⎟
⎟
⎟
⎟
⎠

⋅xi. (4)  

where |P| is the total number of supporting points, and ‖ p, si ‖ is the 
distance from a point p to a segment si. Ṗ(si) is the set of 2D supporting 
points of si. ε is the distance threshold from the point to the segment and 
is set to the average vertical distance between 2D supporting points to 
their corresponding wall candidate segments in our experiments.Point 
coverage in Eq. (3). Considering the presence of missing parts in point 
cloud, this term is introduced to balance the data completeness. 
Generally, a candidate segment has better quality if its 2D supporting 
points cover it densely and uniformly. We project the 2D supporting 
points of segment si onto si and compute the covered length lencov(i)
between the vertices of segment si. We define that if the distance be-
tween two adjacent projection points is less than the δ, this distance is 
considered to be covered. Thus, this term is given by: 

C =
1
N

⋅
∑

xi∈X

(

1 −
lencov(i)
len(i)

)

⋅xi (5)  

where N is the total number of wall candidate segments, and len(i) is the 
length of segment si. In our experiments, the δ is set to five times the 
density of the supporting points, and the density is set to the average 
distance between a point and its 10-nearest neighbors.Model complexity 
in Eq. (3). This term is added to generate the floorplan with appropriate 
complexity. Here, the vertices of the candidate segments are used to 
measure the complexity. If there are non-collinear segments in all of the 
selected segments connected by an intersection vj, as shown in Fig. 6 (b), 
(d) and (e), we consider that the intersection will introduce a sharp 
structure and define Sharp(vj) = 1; otherwise, Sharp(vj) = 0. This term 
is defined as: 

M =
1
|V|

⋅
∑

vj∈V
Sharp

(

vj

)

(6)  

where V is the set of intersections of the wall candidate segments, and |V|
is the size of V.Constraints. Since we ignore the thickness of the walls, 
two rooms may be divided by one wall, and a wall may be adjacent to 
multiple walls. Thus, we discard the 2-manifold constraint and restrict 
the floorplan to be closed by defining the following: 
∑

si∈Svj

xi = 0 or 2or 3 or 4, ∀vj ∈ V (7)  

where Svj is the set of segments connected to the intersection vj. The 
different selections of segments connected by an intersection are dis-
played in Fig. 6.Optimization. We minimize Eq. (3) with Eq. (7) as a 
constraint by means of the SCIP solver (Gamrath et al., 2020). Then, the 
floorplan is obtained by selecting wall candidate segments with xi = 1, 
as shown in Fig. 5(c). The pseudo code for the optimization is shown in 
Algorithm 1. 

Algorithm 1. Minimize the energy function E (Eq. (3))   
Input: wall candidate segments {si}i=1…ns

, their supporting points set {P(si)}, and the 
segment intersections {vi}i=1…np

. Output: the selected segment set S.  
1: Define ns data terms of point supporting as in Eq. (4);  
2: Define ns data terms of point coverage as in Eq. (5);  
3: Define np data terms of model complexity as in Eq. (6);  
4: Define np constraint terms of model closure as in Eq. (7);  
5: Construct the minimization function E as in Eq. (3) with 2ns +np data terms and np 

constraint terms, which could be transformed into a constrained 0–1 liner 
programming problem;  

6: Solve this 0–1 linear programming problem using the SCIP solver; 
7: Insert all segments {si} that are labeled as 1 to the set S.    

2.3. Non-wall structure reconstruction 

The floorplan reflects the outline of the facades in the indoor scenes 
and can provide rough boundaries of ceilings and floors. Thus, in this 
section we focus on the reconstruction of non-wall structures including 
ceilings, floors and cylinders, using the generated floorplan. 

In real indoor scenes, the ceilings and floors may contain some non- 
horizontal planes, such as slant roofs and steps on the floor. The in-
tersections of these planes (e.g. roof ridge lines, floor step lines) are 
critical elements for describing the building contours. However, these 
elements are usually missing in the floorplan which mainly contains the 
facade lineaments. Considering this problem, we detect planes using 
RANSAC (Schnabel et al., 2007) from the ceiling and floor point cloud, 
and we compute the 3D intersection lines of the ceiling planes {Pc} and 
floor planes 

{
Pf
}
, respectively, followed by projecting those lines onto 

the floorplan. Then, the 2D arrangement is obtained by properly 
extending the line segments of the floorplan with its bounding box as the 
boundary, as shown in Fig. 7(a). The segment extending length is set to 
one tenth of the diagonal length of the bounding box in our experiments. 
At this point, the obtained 2D arrangement contains more complete 
contours of ceilings and floors, which assists with the reconstruction of 
the ceilings and floors. In this section, we will use multilabel MRF 
optimization to obtain the ceiling plane and floor plane label assign-
ments on this 2D arrangement, respectively. Additionally, the final 
ceiling and floor models are generated by extruding each cell of the 
arrangement to its label planes. 

2.3.1. Ceilings and floors reconstruction 

Algorithm 2. Minimize the energy function Ec (Eq. (8))   
Input: 2D arrangement cells {ci}i=1…na 

with nd pairs of adjacent cells, planes P =

{Pc}c=1…nc
∪ blank and the ceiling points set {H(ci)}.  

Output: the plane label set L for cells {ci}.  
1: Define na ∗ (nc +1) data terms as in Eq. (9);  
2: Define nd smooth terms as in Eq. (10);  
3: Construct the minimization function Ec as in Eq. (8) with na ∗ (nc +1) data terms 

and nd smooth terms, which could be transformed into a multi-label energy 
optimization problem;  

4: Solve this multi-label energy optimization problem using α − β swap algorithm;  
5: Insert assigned labels for all cells {ci} into the set L.   

Ceiling arrangement labeling We ortho-sample the ceiling point cloud 
with the step size s, which is set to 0.02 m in our experiments, and we 

Fig. 6. Different conditions of segment selection. There are totally six conditions when selecting segments connected with an intersection vi. Due to ignoring the 
thickness of walls, a wall segment may divide multirooms (corresponds to (d) and (e)), and thus the floorplan is not 2-manifold. However, the floorplan should be 
guaranteed to be closed and (f) is impossible. Consequently, in the above six conditions, except (f), the others are allowed in our pipeline. 
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compute the average heights of the points in each grid to form the ceiling 
height map, as shown in Fig. 7(b). Then, we construct a graph G =

{V ,E }, where V = {vi} is the set of nodes that relate to the cells of the 
2D arrangement, and E = {ei} is the set of edges that relate to the 
connections of the adjacent cells, and the problem aims to assign each 
cell ci to one of the ceiling planes {Pc} IDs or the blank ID (which rep-
resents the outer space). We recover a 3D point pk for each grid in the 
height map, and for each cell ci, we collect points whose projections lie 
in this cell to form a set H(ci). The energy function Ec(Lc) with the 
assignment Lc = {lvi} is defined as: 

Ec

⎛

⎝Lc

⎞

⎠ =
∑

vi∈V

Dvi

⎛

⎝lvi

⎞

⎠+ β⋅
∑

evi ,vj ∈E

Sevi ,vj

⎛

⎝lvi , lvj

⎞

⎠ (8)  

where the former is the data term, the latter is the smooth term and β is 
the balance parameter, which is set to 0.5 in our experiments. 

In Eq. (8), the data term is introduced to measure the fitting degree of 
set H(ci) in cell ci to a plane, which is given by: 

Dvi

(

lvi

)

=
|ci|

|H(ci)|

∑

pk∈H(ci)

||pk, lvi || (9)  

where |ci| is the area of cell ci, |H(ci)| is the size of H(ci), and ||pk, lvi || is 
the vertical distance between point pk to the plane with the label lvi . 

In addition, for penalizing the different label assignments of adjacent 
cells ci and cj, the smooth term is used and is defined as: 

Sevi ,vj

⎛

⎜
⎜
⎜
⎜
⎝

lvi , lvj

⎞

⎟
⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|evi ,vj |⋅
(

1 −
3λ0

λ0 + λ1 + λ2

)

iflvi ∕= lvj

0, iflvi = lvj

, (10)  

where 
⃒
⃒evi ,vj

⃒
⃒ is the length of edge evi ,vj , which is shared by cells ci and cj,

λ0 is the minimum eigenvalue of the covariance matrix of point set 
{
pk
⃒
⃒pk ∈ H(ci) ∪ H(cj)

}
, and the equation 3λ0

λ0+λ1+λ2 
can be used to measure 

the planarity of a point set. 
The global optimization problem defined in Eq. (8) is solved by the 

graph-cut algorithm (Boykov et al., 2001; Boykov and Kolmogorov, 
2004), and the generated ceiling label assignment is shown in Fig. 7(d). 
The pseudo code for the optimization is shown in Algorithm 2.Floor 
arrangement labeling. The floor label assignment is obtained by con-
structing and solving a global optimization function Ef (Lf ), which is the 
same as Eq. (8), in which the ceiling point cloud is replaced with the 
floor point cloud and the assignment Lc is changed with Lf = {lvi} and 
lvi ∈

{
Pf
}
∪ blank ID. The floor label assignment is shown in Fig. 7(e). 

Label consistency adjustment. Because most of the indoor scenes have 
closed structures, each area in the scene should have both a ceiling and a 

floor. However, there may be some missing areas in segmented point 
cloud, such as Fig. 7(c), and the ceiling and floor label assignments are 
obtained separately; therefore, for some cells in the 2D assignment, 
there may be only the ceiling or only the floor. These inconsistent results 
lead to opening structures, which not only conflict with the closure of 
the indoor scene but also increase the uncertainty of the subsequent wall 
reconstruction. To address this problem, we use a label consistency 
adjustment step to obtain the consistent label assignments. 

There are a total of four kinds of results for the ceiling and floor la-
beling of a cell, as shown in Fig. 8. Among these four results, Fig. 8(b) 
represents that the cell Ci belongs to the indoor scene and has a ceiling 
and a floor, and Fig. 8(c) represents that the cell Ci belongs to the outer 
space, not the indoor scene. The two conditions do not introduce 
openings and thus are acceptable. In contrast, the last two conditions, 
Fig. 8d) and and Fig. 8(e), either only have a floor or only have a ceiling, 
which cause an open side of the scene and thus are not allowed. Here, we 
aim to adjust the cell labels to solve the inconsistencies. Specifically, we 
define the total energy E(L) of the cells in the arrangement as: 

E
(
L
)
= Ec

(
Lc
)
+Ef

(
Lf
)

(11)  

where Ec(Lc) and Ef (Lf ) are the ceiling and floor labeling energy defined 
in Eq. (8), and L = Lc ∪ Lf . For each cell with inconsistent labels (cor-
responding to the conditions (d) and (e) in Fig. 8), we perform the label 
adjustment in sequence. Taking (d) in Fig. 8 in that a cell has a floor but 
no ceiling as an example, we change the blank ceiling ID to each of {Pc}

and then compute the energy E(L). Next, we change the floor label Pfi to 
the blank floor ID and also compute the energy E(L), followed by 
selecting the label assignment with the minimum E(L) as the new label of 
the cell Ci. We apply the above adjustment on all of the cells with 
inconsistent labels one by one and finally obtain the consistent label 
assignments. An example is shown in Fig. 7, in which some inconsistent 
cells in (d) and (e) are successfully modified in (f) and (g). Extruding 
cells to their label planes gives the ceiling and floor models, as shown in 

Fig. 7. Ceiling and floor label assignments on Church_LiDAR scene. (a) is the 2D arrangement by adding the projection of intersection lines between different ceilings 
and different floors on the floorplan. (b) and (c) are ceiling and floor height maps respectively. (d) and (e) are initial labeling results of ceilings and floors. And (f) and 
(g) are final label assignments after performing the Label consistency adjustment in Section 3.3.1. As can be seen, the floor height map (c) has serious deficiency and the 
initial labeling result (e) has a poor quality. However, with the help of Label consistency adjustment, we can obtain a more consistent and complete label result (g), 
enhancing the robustness of the proposed method to missing areas in the point cloud to a certain extent. 

Fig. 8. Example of label assignments on a cell Ci (a). In (b), (c), (d) and (e), the 
top one is the ceiling plane labeling result of Ci, and the bottom one is the floor 
plane labeling result of Ci, In order to obtain closed indoor models, (b) and (c) 
are acceptable, and (d) and (e) are not allowed. 
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Fig. 9. Note that the label adjustments are performed in sequence, which 
is a greedy process. However, because the number of cells with incon-
sistent labels is small and these cells are usually far apart, we found that 
this simple greedy adjustment is sufficient to obtain consistent and ac-
curate label assignments in our experiments. 

By using the above label consistency adjustment, the proposed 
method has good tolerance to the quality of the point cloud and the 
semantic segmentation. In addition, different from the assumption that 
indoor scenes have horizontal ceilings and floors (Cui et al., 2019; Wang 
et al., 2020; Tran and Khoshelham, 2020), we construct the 2D 
arrangement with rich contours of scenes and obtain the ceiling and 
floor models by energy optimization on the arrangement. This strategy 
can identify and recover the non-horizontal structures (e.g. slant roofs, 
step on the floor) in the ceilings and floors, making the proposed method 
more flexible in addressing indoor scenes with different structures and 
complexity. 

2.3.2. Cylinders reconstruction 
In addition to the wall, ceiling and floor, the cylinder is also a 

common permanent structure in indoor scenes. However, not all scenes 
contain cylinder structure, and we will perform cylinders reconstruction 
if a cylinder point cloud is found in the scene segmentation step in 
Section 3.1. 

Since we aim to reconstruct vectorized models with piecewise 
planes, we detect cylinder structures using RANSAC (Schnabel et al., 
2007) from cylinder point cloud and then use regular octahedra to 
approximate the detected cylinder structures. The heights of the cylin-
ders are determined by the recovered ceiling and floor models. 

2.4. Wall structure reconstruction 

Although we have obtained the ceiling and floor models, not all walls 
are connected from a floor to a ceiling, as shown in Fig. 10, and thus, it is 
not feasible to recover the wall model by simply lifting the obtained 
floorplan (e.g. Fig. 5(c)) to the heights of the ceilings and floors. 
Considering that the 2D arrangement (e.g. Fig. 7(a), which contains the 
floor step line.) contains more complete contours than the floorplan, we 
view each edge of the arrangement as a potential wall and focus on 
recovering the wall structures using the arrangement. 

According to the ceiling and floor labels of the adjacent cells con-
nected by an edge, there are five valid height conditions, as shown in 
Fig. 11. Under conditions in which the ceiling or floor label planes of 
adjacent cells are not connected, such as Fig. 11(c)(d)(e), and in which 
the edge is on the boundary, such as Fig. 11(f), the height difference is 
introduced (marked with black segments in Fig. 11). The edges with 
these height differences are added to the initial wall solution Walli for 
the closure of the models, as shown in Fig. 12(a)(c), and whether to 
select the edges with other height differences, such as red dashed lines in 
Fig. 11, is uncertain due to the noise and missing areas in the point 
cloud, as well as the observation that not all walls are connected from a 
floor to a ceiling. For these edges {ei} with the height difference 

{(dmaxi, dmini)}, as shown in Fig. 12(b)(c), we named them Euncertain and 
introduced the variable X = {xi} for each, which has the same meaning 
as that used in Eq. (3). We defined the point supporting term S and point 
coverage term C and cast the selection problem as another energy 
optimization similar to Eq. (3). The energy function is given by: 

E = β1⋅S+ β2⋅C (12)  

where β1 and β2 are the balance parameters. Note that if the edge ei is 
part of the floorplan, it is attached with a set of supporting points; we 
retain the points in this set whose z coordinates are within (dmaxi, dmini)

Fig. 9. Ceiling and floor models of Church_LiDAR scene. (a) and (b) are ceiling 
and floor models by extruding cells of 2D arrangement ((a) in Fig. 7)) to their 
corresponding planes according to the assignments (f) and (g) in Fig.. 7. 

Fig. 10. One close-up on Office_MVS scene. (a) is an image of elevators on 
Office dataset. (b) is corresponding dense MVS point cloud with color. (c) is 
corresponding MVS mesh. Due to the existence of elevators, the walls are not 
connected from a floor to a ceiling directly, such as the area circled in a 
red rectangle. 

Fig. 11. Different height difference conditions. (a) is a pair of adjacent cells ci 

and cj connected by an edge eij. In all subpart, the edge eij is marked with a 
brown segment. Pci and Pcj are ceiling planes and Pfi and Pfj are floor planes. In 
(c)-(e), the ceiling label planes or floor label planes of adjacent cells are not 
connected, introducing the height differences (black segments). In (f), the cell cj 

is labeled blank and the edge eij becomes a boundary, also causing the height 
difference. For the closure of the final model, the edge eij with the above height 
differences should be recovered, and for edge eij with other height differences 
(red dashed segments), whether to recover them is an uncertain problem which 
we solve with an global energy optimization. 
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as the new set P(ei) of the edge ei, and otherwise, the set of support 
points is set to an empty set.Point supporting in Eq. (12). This term en-
courages the selection of edges with more supporting points and is 
defined as: 

S = 1 −
1
|P|

∑

xi∈X
|P

(

ei

)

|⋅xi. (13)  

where |P| is the total number of supporting points of all edges, and |P(ei)|

is the number of supporting points of edge ei.Point coverage in Eq. (12). 
This term is used to measure how well the supporting points cover the 
face fi, which is constructed by lifting the edge ei to the height difference 
(dmaxi,dmini). The term is thus defined as: 

C =
1
|X|

⋅
∑

xi∈X

(

1 −
Â
Ai

)

⋅xi (14)  

where |X| is the total number of variables, Â is the α-shape area of the 
projection points from the supporting points of edge ei to face fi, and Ai is 
the area of face fi. In our experiments, 

̅̅̅
α

√
is set to the same value as the δ 

used in Eq. (5).Constraints. To ensure the closure of indoor models, the 
generated walls should be continuous. For the vertex of edge ei with the 
height difference (dmaxi,dmini), we define it to be a boundary vertex if 
the height difference (dmaxi, dmini) at this vertex already exists in the 
initial solution Walli, as shown in Fig. 12(b)(d), where the red dots 
circled by a red rectangle is a boundary vertex because its corresponding 
wall edges in (d) (red segment) has existed in Walli. In addition, the 
number of selected edges connected by this vertex in this step is un-
limited. For non-boundary vertices (black dots in Fig. 12(b)), the num-
ber of selected edges connected by them in this step is restricted to not be 
one to avoid generating discontinuous walls. Thus, the constraint is: 
∑

ei∈Evj

xi = 0 or 2or 3 or 4, ∀vj ∕∈ V border (15)  

where Evj is the set of edges connected by vertex vj, and V border is the set 
of boundary vertices. 

Optimization. We solve the energy minimization problem defined by 
Eq. (12) with the constraint Eq. (15) using the SCIP solver (Gamrath 

et al., 2020), and select the edges with xi=1 into the initial model Walli 
to generate the complete wall model Wallf , as shown in Fig. 12(f). The 
pseudo code for the optimization is shown in Algorithm 3. 

Algorithm 3. Minimize the energy function E (Eq. (12))   
Input: edges {ei}i=1…ne 

with uncertain heights and their supporting points set {P(ei)}.  
Output: the selected edge set W. 
1: Define ne data terms of point supporting as in Eq. (13);  
2: Define ne data terms of point coverage as in Eq. (14);  
3: Define np constraint terms of model closure as in Eq. (15);  
4: Construct the minimization function E as in Eq. (12) with 2ne data terms and np 

constraint terms, which could be transformed into a constrained 0–1 liner 
programming problem;  

5: Solve this 0–1 linear programming problem using the SCIP solver; 
6: Insert all edges {ei} that are labeled as 1 to the set W.    

2.5. LoD2 model assembly 

After obtaining the individual models of the permanent structures in 
indoor scenes, the vectorized LoD2 model with semantic information is 
generated by simply merging all of the individual results. Due to the 
ignorance about the wall thickness, the final model is not guaranteed to 
be a 2-manifold, but it is closed and intersection-free. 

In the whole pipeline, we detect planes in 3D space, and most of the 
remaining work is performed in 2D space without the Manhattan or 
Atlanta world assumptions, which reduces the problem complexity and 
enhances the scalability of the proposed method. In addition, the Label 
consistency adjustment following Eq. (11) and the optimization following 
Eq. (12) are helpful in resisting the noise and missing areas in the se-
mantic point cloud, which make our method more robust to the quality 
of the data and the segmentation. 

3. Experimental results 

We evaluate the proposed vectorized indoor surface reconstruction 
method in terms of correctness, simplicity and efficiency, and we 
compare it with other state-of-the-art methods on several datasets 
quantitatively or qualitatively. The correctness is measured by the mean 
Hausdorff distance from the reconstructed model to the ground truth, 
the simplicity is measured by the number of facets of the final model, 
and the efficiency is measured by the running time. Our system is 
implemented in C++ with the CGAL library (The CGAL Project, 2019), 
the maxflow library (Boykov et al., 2001; Boykov and Kolmogorov, 
2004) and the SCIP solver (Gamrath et al., 2020). All of the experiments 
were performed on a PC with a 4-core Intel Xeon CPU (3.7 GHz) and an 
NVIDIA Titan RTX GPU. 

3.1. Datasets 

We use three indoor scene datasets with different characteristics and 
complexity to comprehensively evaluate our approach. The first dataset 
is derived from two indoor scenes named Meeting room and Church, 
provided by the Tanks and Temples benchmark (Knapitsch et al., 2017), 
which is used to evaluate the image-based 3D reconstruction methods. 
We name this dataset the MC dataset, which contains two LiDAR point 
cloud ground-truths that were captured using an industrial laser scanner 
(Meeting_room_LiDAR and Church_LiDAR) and two MVS point cloud 
reconstructed by COLMAP (Schonberger and Frahm, 2016) (Meet-
ing_room_MVS and Church_MVS), as well as the corresponding scene 
image sets. The second is the BIM feature extraction dataset provided by 
the MiMAP benchmark (Wen et al., 2020; Wang et al., 2018). This 
dataset includes three indoor scene LiDAR point cloud, and it describes a 
closed-loop corridor (Mimap_bim_00), a corridor and multiple rooms 
(Mimap_bim_01), and a closed-loop corridor and multiple rooms 
(Mimap_bim_02). The last is our own dataset (Office), which includes a 
complete office floor scene (Office_MVS). The Office dataset contains an 

Fig. 12. Wall structure reconstruction on Church_LiDAR scene. (a) is the 2D 
projection of the initial wall solution Walli. (b) is the uncertain edges Euncertain 

with the boundary vertices marked by red dots and others marked by black 
dots. In (c), the orange walls are initial wall solution Walli and the blue walls 
are uncertain walls by lifting edges in (b) to their corresponding height dif-
ference. (d) and (e) are two close-ups of Walli. The red existed wall edge in (d) 
corresponds to the boundary vertex circled by red rectangle in (b). And the 
black uncertain wall edge in (e) corresponds to the non-boundary vertex circled 
by black rectangle in (b). (f) is the final wall model after optimization. 
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MVS point cloud generated by COLMAP (Schonberger and Frahm, 2016) 
from 8586 images with a resolution 800*1,600. The proposed method is 
performed and compared with other state-of-the-art methods (Nan and 
Wonka, 2017; Garland and Heckbert, 1997; Salinas et al., 2015; Cohen- 
Steiner et al., 2004; Liu et al., 2018; Chen et al., 2019) on the above three 
datasets. The correctness, simplicity and efficiency are evaluated on the 
first two datasets. Due to the lack of ground truth on the last dataset, we 
mainly qualitatively validate the robustness of the proposed method on 
it, in which obvious noise and missing areas exist. Detailed information 
about the datasets is shown in Table 1. 

3.2. Semantic segmentation 

In our pipeline, we use a two-stage strategy that includes segmen-
tation and reconstruction to obtain the vectorized indoor models. In the 
segmentation stage, we segment the permanent structures, including 
walls, floors, ceilings and cylinders, from the input data and adopt 
different segmentation methods according to the data types and data 
characteristics. Specifically, for the MiMAP dataset that only includes 
LiDAR point cloud with horizontal ceilings and floors and without cyl-
inders, we follow the strategy in Section 3.1.1. First, the normal infor-
mation is used to segment the vertical and horizontal point cloud using 
the threang = 5◦. Then, we take the vertical point cloud as the wall point 
cloud because there are no cylinders in the scenes, and we compute the 
average height of the wall points, followed by using the height to divide 
the horizontal point cloud into the ceiling and floor point cloud. The 
segmentation results are shown in Fig. 3 and Fig. 13(e)(f). 

For the MC dataset, due to the complex structures of the Meet-
ing_room_LiDAR and Church_LiDAR (include the complex roof beams 
and lots of clutter), the segmentation results using geometric attribu-
tions of point cloud are poor. Thus, we first align the MVS point cloud 
(Meeting_room_MVS and Church_MVS) to the LiDAR point cloud 
(Meeting_room_LiDAR and Church_LiDAR) using the transformation 
matrix provided by the benchmark (Knapitsch et al., 2017), followed by 
performing Poisson surface reconstruction on LiDAR point cloud and 
visibility-based meshing on MVS point cloud to obtain the dense mesh 
models. Due to the strict alignment of the MVS and LiDAR data, the MVS 
information including the camera parameters, can also be used on the 
mesh derived from the LiDAR point cloud. Therefore, we adopt the 
Segmentation-Fusion scheme, as mentioned in Section 2.1.2, to perform 
segmentation on both the MVS and LiDAR meshes. Because the scenes 
on this dataset have regular rectangular foot areas and contain rich 
texture information, most of the images in the corresponding scene 

image set cover a large area of the scene with adequate features. Thus, in 
our experiments, 5–8 training images on each of the two scenes are 
sufficient to fine-tune the pretrained network. Fig. 14(a) and (b) show 
some 2D segmentation results on MC dataset. After obtaining the final 
semantic mesh, we densely resample the facets on the mesh to obtain the 
point cloud with different semantic information, as shown in Fig. 13(a) 
(b)(c)(d). As seen in Fig. 14, the 2D segmentation results are generally 
acceptable, although there still be a few errors in some local details. By 
performing the MRF optimization on the 3D mesh, the final segmenta-
tion quality is improved, as seen in Fig. 13. However, due to noises and 
missing areas in the point cloud, there are still some defects in the 3D 
segmentation results. However, since our subsequent vectorized 
modeling process is relatively robust to data defects, a certain error in 
the segmentation results is tolerable. 

For the Office dataset, we adopt the same strategy with the MC 
dataset to obtain the semantic point cloud. Since this dataset contains a 
closed-loop corridor scene, there are smaller valid covering spaces in 
each image than on the MC dataset. Thus, we pick up 25–30 images on 
this dataset to fine-tune the pretrained network. Fig. 14(c) shows some 
2D segmentation results on Office dataset. In addition, it should be noted 
that the Office_MVS scene in this dataset contains a large number of 
weak texture areas, which lead to the serious missing parts in MVS point 
cloud. The triangular mesh also has some obvious deficiencies even after 
mending some small holes, as shown in Fig. 23. The existence of massive 
defects in the Office_MVS makes the reconstruction task more chal-
lenging, but it is in line with the real indoor reconstruction situation. 

In addition, we record the segmentation time (including the 2D 
image segmentation time and 3D MRF fusion time if using the Segmen-
tation-Fusion scheme.) in Table 1. With the combination of a mature 2D 
segmentation network and 3D MRF optimization, the Segmentation- 
Fusion scheme can obtain good segmentation results by annotating only 
dozens of training data. 

3.3. Modeling parameter study 

The proposed multistep framework contains several key parameters, 
including plane detection parameters, regularization parameters, wall 
segment selection weights and wall reconstruction weights. In this sec-
tion, we perform experiments to show that most of these parameters are 
insensitive to different scenes, and only a few of them need to be 
adjusted according to the scenes. Table 2 lists the above-mentioned 
parameters, and a detailed discussion about them is as follows.Plane 
detection parameters. We detect plane primitives from the wall, ceiling 
and floor point cloud using RANSAC algorithm due to its robustness to 
outliers and noise, as is mentioned in (Xia et al., 2020; Kaiser et al., 
2019). RANSAC includes the four most important parameters. The first 
important parameter is pmin, which represents the least point number to 
support a plane, and the smaller its value is, the more planes are 
detected, and the more noise that could also be generated. In our ex-
periments, we set pmin to 500 on Mimap_bim_00 and 1000 on other 
datasets when detecting wall planes, and we set it to 10000 on all of the 
datasets to detect the ceilings and floors, which usually consist of more 
dense and larger planes. The second parameter is dmax, which represents 
the maximum distance between an inlier and a plane, which is set to 
0.05 m in our experiments. The third parameter is Pmiss, which reflects 
the probability of missing the largest planes; it is set to 0.001 in our 
experiments. The last parameter is thredev, which controls the maximum 
deviation of points in one plane, and we set it to 0.90 on the LiDAR data 
and to 0.85 on the MVS data. Among the above four parameters, pmin and 
thredev are slightly adjusted to better fit the point cloud with different 
quality and to obtain more reliable detection results, which is conducive 
to the subsequent reconstruction. Compared with them, the remaining 
two parameters have less impact on the detection results, and we set 
them to the same value on different indoor scenes.Regularization pa-
rameters. We use the threshold threang in Section 3.2.1 when performing 
RANSAC to regularize the parallelism and orthogonality of the detected 

Table 1 
Overview of the different datasets. #points is the number of points in the point 
cloud; Areas is the floor area of the bounding box of the scene; ts is the seg-
mentation time; tr is the reconstruction time, which consists of the floorplan 
generation time tr1, non-wall structure reconstruction time tr2 and wall structure 
reconstruction time tr3.  

Dataset Scene #points  Areas 
(m2) 

ts 
(sec)  

tr (tr1/tr2/tr3) 
(sec)  

MC Meeting_room_LiDAR 3 M 237.6 220.0 199 (53/134/ 
12)  

Church_LiDAR 3 M 1851.2 166.4 200 (58/130/ 
12)  

Meeting_room_MVS 551 k 237.6 195.0 100 (64/24/ 
12)  

Church_MVS 16 M 1851.2 180.0 185 (40/130/ 
15) 

MiMAP Mimap_bim_00 2.09 M 1528.0 2.3 90 (48/38/4)  
Mimap_bim_01 8.68 M 518.6 9.2 733 (651/33/ 

49)  
Mimap_bim_02 18.65 

M 
2306.6 19.7 885 (559/ 

171/155) 
Office Office_MVS 100 M 965.7 600.0 259 (201/30/ 

28)  

J. Han et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 57–74

67

planes, enhancing the regularity of the wall planes. Then, the threshold 
threang2 and threnum are used to merge close wall segments to obtain a 
cleaner result. The higher the three parameters are, the more regular and 
cleaner the result is. Fig. 15 displays the results of different 

Fig. 13. Scene segmentation results on three datasets we used. For each scene, the three displays are input data, segmented wall point cloud and segmented non-wall 
point cloud (includes ceiling, floor and cylinder) respectively. Different semantic point cloud is shown with different colors. The segmentation results on Mim-
ap_bim_00 and Office_MVS scenes are displayed in Fig. 3 and Fig. 4. 

Fig. 14. Examples of 2D segmentation on MC and Office datasets. In (a), (b) and (c), the top row shows the input images and the bottom row is their segmentation 
results using fine-tuned DeepLabv3. The ceiling, floor, wall, cylinder and others are colored as yellow, red, green, blue and grey respectively. 

Table 2 
Key parameters of the proposed method.  

Parameters and Values Descriptions 

pmin = 5/10/100(∗100) the least point number to support a plane 
dmax = 0.05 m  the maximum distance between an inlier and a plane 
Pmiss = 0.001  the probability to miss the largest planes 

thredev = 0.85/0.90  the maximum deviation of points in one plane 
threang = 0◦ − 5◦ the threshold for regularizing planes 

threang2 = 15◦-25◦ the angle threshold for merging close wall segments 
threnum = 10–20  the number threshold for merging close wall segments 

λ1 = 0.5, λ2 = 0.2, λ3 =

0.3  
the balance parameters in the function for wall segment 

selection (Eq. (3)) 
β1 = 0.5, β2 = 0.5  the balance parameters in the function for wall structure 

reconstruction (Eq. (12))  
Fig. 15. Effect of different regularization parameters on Meeting_room_LiDAR 
scene. The displayed three values are threang , threang2 and threnum respectively. 
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regularization parameters. As can be seen in Fig. 15(a), there are more 
small structures without plane regularization, and larger values of 
threang2 and threnum can lead to more regular results, such as the bottom 
right corner of the floorplan in (b) and (c). However, even with different 
regularization parameters, the floorplan is generally consistent, just 
with different degrees of detail and regularity. In our experiments, the 
results are acceptable when threang is set to 0◦-5◦, the threang2 is set to 
15◦-25◦, and the threnum is set to 10–20.Wall segment selection weights. We 
transform the floorplan generation into an energy minimization defined 
by Eq. (3), where the first two terms are essential to generate a 
reasonable result, and the last term M controls the complexity of the 
final floorplan. A higher weight λ3 in Eq. (3) will lead to a floorplan with 
fewer small structures. Fig. 16 shows the different results by gradually 
increasing the complexity weight λ3 with λ2 = 0.2 and λ1 = 1 − λ2 − λ3. 
As displayed in Fig. 16, different energy weights give a balance between 
the model completeness and model complexity, and they can be adjusted 
according to different datasets. In our experiments, we set λ1 = 0.5, λ2 =

0.2 and the λ3 = 0.3 on all of the datasets.Wall reconstruction weights. 
Due to the noise and missing areas in the point cloud, as well as the 
observation that not all walls are connected from the floor to the ceiling, 
it is unreasonable to directly lift the edges of the floorplan to the height 
defined by the ceilings and floors. Considering the model closure and the 
balance between the point number and point coverage, we define the 
energy function Eq. (12) to select the final wall structures. Adjusting the 
values of β1 and β2 in Eq. (12) can give a different importance on the 
data completeness, as shown in Fig. 17. As can be seen in Fig. 17 
consider only the point number term or point coverage term, obtaining 
the results that are not the best recovery of the point cloud (a). By 
contrast, (c) balances both terms and obtains a more reasonable model. 
In our experiments, we set β1 and β2 both to 0.5 on all of the datasets. 

3.4. Reconstruction results evaluation 

In this section, we evaluate the 3D reconstructed models of the 
proposed method on three datasets with different characteristics and 
complexity, and we compare them with four state-of-the-art methods. 
The first method is a general vectorized reconstruction method, named 
Polyfit (Nan and Wonka, 2017), which adopts the slice-then-selection 
strategy in 3D space, and the floorplan generation stage in our pipeline 
can be viewed as a similar 2D version of it. The remaining three are mesh 
decimation methods, including SAMD (Salinas et al., 2015), VSA 
(Cohen-Steiner et al., 2004) and QEM (Garland and Heckbert, 1997), 
which aim to simplify the dense mesh model to a lightweight model. 
Among the four state-of-the-art methods, the input of Polyfit is a point 
cloud while the remaining three methods take the mesh as input. 
Although the last three methods focus on reducing the facet number of 
the reconstructed dense meshes and the inputs are not exactly the same 
as with our method; however, our motivation and expected output are 
very similar, that is to obtain a compact model. Thus, the comparisons 
with these methods are meaningful. For LiDAR point cloud (including 
the MiMAP dataset and the Meeting_room_LiDAR and Church_LiDAR), 

we perform Poisson surface reconstruction on it to obtain the dense 
mesh. For MVS point cloud (including the Office dataset and the Meet-
ing_room_MVS and Church_MVS), we obtain the mesh using visibility- 
based meshing implemented in OpenMVS (openMVS, 2020). Note that 
the reconstructed mesh using visibility-based meshing is more detailed 
than that using Poisson surface reconstruction because the former makes 
full use of the visibility information provided by calibrated cameras; 
however, it is suitable only for MVS point cloud. After meshing the point 
cloud, we take the generated meshes as input of SAMD, VSA and QEM. 
For Polyfit, we take the original LiDAR point cloud on the MiMAP 
dataset and the point cloud resampled uniformly from generated meshes 
on the MC and Office dataset as its input. Because the inputs of our 
reconstruction stage on the Meeting_room_LiDAR and Church_LiDAR 
scenes are the resampled point cloud from semantic mesh, we also take 
the resampled point cloud rather than the original LiDAR point cloud as 
the input for Polyfit on these two scenes to fairly evaluate the results 
between ours and Polyfit. 

3.4.1. Evaluation on the MC dataset 
The MC dataset contains two indoor scenes that, in total, include two 

LiDAR point cloud and two MVS point cloud. We adopt the Segmentation- 
Fusion strategy to obtain the segmented point cloud and then take the 
result as input to perform the reconstruction stage. Since there is no 
vectorized model ground truth on this dataset, we use the dense LiDAR 
point cloud with high precision as the ground truth and make the 
quantitative analysis using them. Fig. 18 displays the reconstruction 
results of our method and the other four methods.Model correctness. We 
resample 500 k points on the reconstructed model and compute the 
mean Hausdorff error from the point sets to the ground truth to measure 
the model correctness. Compared with LiDAR data, it is more chal-
lenging to reconstruct models with the MVS data since the latter usually 
inevitably contains more noise and missing areas. As seen in Fig. 18, our 
method can generate accurate and regular models with comparable 
error on the LiDAR input and the lowest error on the MVS input 
compared with the other four approaches. Polyfit depends on the quality 
of the detected plane primitives, and one missing plane may greatly 
reduce the model’s quality, such as the result on Meeting_room_MVS in 
Fig. 18(b). By contrast, we decompose the 3D reconstruction into a set of 

Fig. 16. Effect of different model complexity weight λ3 in Eq. (3) on Mimap. 
_bim_00 scene. 

Fig. 17. Effect of different (β1, β2) in Eq. (12) on Mimap_bim_02 scene. In (b), 
(c) and (d), the orange walls are initial wall solution Walli and the blue walls are 
optimal results after solving Eq. (12). The (c) balance the point number and 
point coverage, resulting in a more reasonable and closer wall model to (a) 
compared with (b) that only considers the point number term and (d) that only 
considers the poin.t coverage term. 
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2D optimizations, and the wall, ceiling and floor structures are detected 
and reconstructed in sequence, which reduces the impact of the noise 
and missing areas and can generate more robust and faithful results. In 
addition, the ideal output of our motivation is the vectorized compact 
model with high regularity and high abstractness, which is not the 
exactly the same with the input point cloud or meshes. The SAMD, VSA 
and QEM simplify the meshes while retaining the original shape as much 
as possible, which makes their results more dependent on the input 
models and lack of regularity. Compared with these three methods, we 
can obtain accurate models with high regularity even on the defect- 
laden MVS data.Model simplicity. The number of facets in the final 
models are counted and listed in Fig. 18. Our method and Polyfit aim to 
directly generate the compact polygonal models with piecewise planes 
from the input and can greatly reduce the model redundance. Compared 
with this strategy, the SAMD, VSA and QEM obtain their simplified 
models by reducing the facet number on dense meshes, which does not 
make it easy to achieve the same model simplicity as ours while keeping 
good reconstruction results. As seen in Fig. 13, unlike the LiDAR point 
cloud ((a), (c)), the MVS point cloud ((b), (d)) contains more noise and 
outliers, making most of the results worse on the MVS data. Compared 
with other methods, our approach not only obtains compact models with 
fewer facets (on average, 20% of the VSA, 37% of the SAMD, 50% of the 
QEM and 59% of the Polyfit), but also generates more stable results on 
both the MVS and LiDAR point cloud. For the proposed method, more 
details could be obtained on the LiDAR data than on the MVS data (more 
facets on LiDAR than MVS, 390 vs. 346 on Church, and 441 vs. 368 on 
Meeting_room), but their reconstruction accuracy was comparable (the 
model error on LiDAR and MVS is 0.075 vs. 0.095 on Church, and 0.042 
vs. 0.054 on Meeting_room).Efficiency. Considering that the semantic 
segmentation methods in our pipeline are replaceable and a small 
number of rough segmentation results are acceptable, the segmentation 
part can be viewed as a preprocessing stage, and we mainly compare the 
reconstruction time of our method with other state-of-the-art methods. 
We record the reconstruction running time of our method and others in 
Fig. 18 and list the running time of each step of our pipeline in Table 1. 
The QEM iteratively contracts vertex pairs using quadric matrices, and 
the VSA partitions the mesh and approximates the shape with geometric 

proxies. Both of them perform quickly while having low regularity. The 
SAMD collapses edges with the help of planar proxies added into the 
local error metric, and the running time is longer than VSA and QEM. 
Our method and Polyfit have a more similar motivation, and their 
running time is comparable. Polyfit performs the slice-then-selection in 
3D space, and the number of detected plane primitives is crucial to 
balancing the reconstruction accuracy and the running time. By 
contrast, our method can alleviate the impact of the plane number with 
the dimension reduction operation. 

In addition, we show the internal reconstruction results of the pro-
posed method in Fig. 19. Compared with other indoor reconstruction 
methods that can only address horizontal ceilings and floors (Ochmann 
et al., 2016; Ochmann et al., 2019; Cui et al., 2019; Wang et al., 2020, 
our approach can recover slant ceiling and floor structures (e.g. the slant 
roofs in Fig. 19(a)(b), and the step on the floor in Fig. 19)) and can 
obtain vectorized LoD2 models without using the Manhattan or Atlanta 
world assumptions, enhancing the generality of the proposed method for 
indoor scenes with different characteristics and complexity. 

3.4.2. Evaluation on the MiMAP dataset 
The MiMAP dataset includes three LiDAR point cloud with various 

complexity and the corresponding BIM line framework ground truth. We 
manually draw the 3D models according to the line frameworks, as 
shown in Fig. 20, and take them as the vectorized reconstruction ground 
truth on which we compare the model correctness of different methods. 
In addition, we compute the mean Hausdorff error from the generated 
models to the LiDAR point cloud to measure the difference between the 
output and the original input. The reconstruction results and compari-
sons are shown in Fig. 21.Model correctness. As seen in Fig. 21, our 
method can obtain the vectorized models with the lowest error on all of 
the three datasets except for Mimap_bim_02, where the point cloud error 
ep of ours is slightly higher than that of Polyfit, while the ground truth 
error eg is greatly lower. Since we measure the correctness with the mean 
Hausdorff error from the output to the ground truth and the input point 
cloud, the missing areas on the LiDAR point cloud, as shown in Fig. 22, 
will influence the error computation, resulting in a slightly higher error 
than that on the MC dataset. In addition, the point cloud has some 

Fig. 18. Reconstruction results on the MC dataset for our method, Polyfit, QEM, SAMD and VSA. We compute and display the mean Hausdorff error(m) e from the 
output to LiDAR point cloud and show the error models with the meaning that the bluer the color, the smaller the error and the redder the color, the bigger the error. 
In addition, we also record the number of facets of the final model n and the reconstruction running time(sec) t. The lowest error and the minimum facet number on 
each dataset are underlined. 
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ambiguous parts, and the BIM line framework ground truths do not 
totally obey the point cloud, which also affects the error computation, as 
shown in Fig. 22(a), where the ceiling contour in the BIM line frame-
work is slightly higher than most of the ceiling points. The mesh 
simplification methods, including SAMD, VSA and QEM, can obtain 
models as close to the input as possible, and thus, their errors on the 
LiDAR point cloud are lower than those on the vectorized ground truths. 
However, as seen in Fig. 21, even on the LiDAR point cloud, the three 
mesh simplification methods still generate many defects and errors that 
are obviously larger than ours.Model simplicity and Efficiency. As shown 
in Fig. 21, our method can obtain enough compact models with high 
simplicity in a reasonable running time. Polyfit takes a very long time to 
obtain the final model on Mimap_bim_01 and Mimap_bim_02 because it 
intersects and selects planes in 3D space and cannot handle input with 

too many plane primitives. Compared with this approach, we transform 
the 3D reconstruction into a sequence of 2D optimizations, which re-
duces the reconstruction complexity and enhances the scalability of our 
method. 

3.4.3. Evaluation on the Office dataset 
The Office dataset includes a dense MVS point cloud that is recon-

structed by COLMAP (Schonberger and Frahm, 2016). This scene con-
tains masses of weak texture regions, such as white walls and glass walls, 
which inevitably lead to a large area that is missing, and a raft of noise in 
the MVS point cloud, as shown in Fig. 23. This problem can be alleviated 
by transforming the MVS point cloud into a triangular mesh. However, 
the mesh also has many areas of noise and a large hole that cannot be 
repaired, as shown in Fig. 23(b), where the large hole is circled with a 
red rectangle. 

Due to the lack of ground truth, we mainly compare the recon-
struction results qualitatively on the dataset, as shown in Fig. 24, where 
we also record the facet number of the final models and the running 
time. As can be seen in Fig. 24, the proposed method can generate an 
accurate and complete model even though the MVS data has obvious 
noise and missing parts. However, the SAMD, VSA and QEM can only 
simplify the meshes and thus cannot address the obvious missing parts. 
Polyfit can resist certain missing data; however, some small structures, 
such as the elevators, could be missing, as shown in Fig. 24(c) with the 
red bounding box. By contrast, with the label consistency adjustment 

Fig. 19. Internal reconstruction results on the MC dataset. For each scene, the first row displays the dense point cloud and our reconstruction result. The second row 
displays the result by putting the point cloud and our result together, and the reconstruction result with semantic information. Without the assumption that ceilings 
and floors consist of horizontal planes, we can recover non-horizontal structures in ceilings and floors, such as the slant roofs in (a) and (b), and the step on the floor 
in (c) and (d) (which are circled with red rectangles). 

Fig. 20. Vectorized reconstruction ground truth on the MiMAP dataset. The 
(a)-(c) are the ground truths of Mimap_bim_00-02. 

Fig. 21. Reconstruction results on the MiMAP dataset for our method, Polyfit, QEM, SAMD and VSA. For each reconstruction result, the mean Hausdorff error(m) eg 

and the left error model are computed from the output to the vectorized ground truth. And the mean Hausdorff error(m) ep and the right error model are computed 
from the output to the LiDAR point cloud. In addition, the number of facets of the final model n and the reconstruction running time(sec) t are recorded. The lowest 
error and the minimum facet number on each dataset are underlined. 
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following Eq. (11) and the global optimization following Eq. (12), the 
proposed method can handle a degree of noise and missing areas and 
thus is more robust in a variety of indoor scenes. 

3.5. Comparison with learning-based reconstructions 

In recent years, with the rapid development of deep learning, much 
work has used neural networks to help solve the indoor reconstruction 
problem. Many of these studies used the network to extract corners and 
room segments from point cloud or images, and then incorporated them 
into traditional optimizations to obtain the final model (Phalak et al., 
2020; Liu et al., 2018; Chen et al., 2019). Recently, the method in (Liu 
et al., 2021) used an end-to-end network architecture to directly convert 
3D points into models, but this approach is usually suitable only for 
small objects and relatively complete point clouds. In this section, we 

compare the proposed method with two state-of-the-art and open- 
sourced learning-based reconstruction methods, FloorNet (Liu et al., 
2018) and Floor-SP (Chen et al., 2019). FloorNet takes the Manhattan- 
rectified point cloud and images (optional) as input and combines 
three network branches and Integer Programming to obtain the floor-
plan. Floor-SP takes the point-density/normal image from a top-down 
view as input, uses the network to obtain room segmentation results 
and corners/edges likelihood, and defines the energy function, followed 
by solving it with sequentially finding room-wise shortest paths, which 
can handle non-Manhattan scenes. Note that our method generates 3D 
vectorized models, including ceiling, floor, wall and cylinder structures; 
however, the above two methods focus on the floorplan modeling. Thus, 
we ortho-project our reconstructed wall models onto the ground to 
generate floorplans and use them to compare our method with the two 
methods. In experiments, we used the segmented wall point cloud on 
three datasets as the input of FloorNet, and the top-down density/ 
normal map of the wall point cloud as the input of Floor-SP. Fig. 25 
displays the floorplan results of ours and these two methods. 

As can be seen in Fig. 25, compared with the other two learning- 
based methods, the results of our method are more consistent with the 
input point cloud, and are more complete and regular. FloorNet and 
Floor-SP rely on relatively good semantic segmentation results as the 
input for subsequent optimization. Because the datasets used in the 
paper and the training data used in FloorNet and Floor-SP are not 
completely the same in structure, the semantic segmentation results on 
some of the datasets are poor, and eventually, the floorplans are un-
satisfactory, such as the results in Fig. 25 (e), (h). Thus, the general-
ization of the two methods is limited, and training on larger datasets 
may alleviate this problem. In addition, the two methods use a small 
resolution map (256*256) which makes it difficult to capture structural 
details, reducing the quality of the final results. In terms of the running 
time, FloorNet is fast and takes an average of 13.8s on the three datasets. 
Floor-SP is slower and may take a long time to find the shortest path in 
the optimization stage, and the average time is 607.2s on the three 
datasets. Different from these two methods, we take advantage of the 
geometric information of the point cloud and the verticality of the fa-
cades to transform the reconstruction into 2D space, and we obtain the 
floorplan by solving the optimization problem, which has good robust-
ness to scenes with different structural complexity, noise and missing 
areas, and the average time is 331.5s on the three datasets. However, 
using the network to extract high-level features and make predictions 
and then integrating inferred information with geometric optimization 
methods is worthy of in-depth thinking when solving reconstruction 
problems, which is also our concern. 

4. Conclusions 

In this paper, we propose a complete and effective multistep pipeline 
for reconstructing indoor scenes with a vectorized representation that 
confirms to the CityGML 3.0 (Kutzner et al., 2020) LoD2 and without the 
Manhattan or Atlanta world assumptions. Different from the general 
strategy in that the reconstruction is performed as a whole in 3D space, 
we decompose the 3D reconstruction into a sequence of 2D segment or 
cell assembly problems by means of the semantic information, and the 
final results can be obtained by solving each global optimization sub- 
problem and then combining the respective results. The proposed 
strategy reduces the reconstruction complexity and has the ability to 
restore complex indoor permanent structures including sloping ceilings 
and floors, and is robust to different styles of the scenes. Experiments 
show that our method can generate accurate models with high simplicity 
and semantic information on both precise LiDAR data and defect-laden 
MVS data, which also demonstrates the generality of the proposed 
method. 

In our approach, the wall planes are detected using RANSAC. How-
ever, some small planes could be missing if there are serious deficiencies 
in the point cloud, which will affect the reconstruction results, such as 

Fig. 22. Error analyses on the MiMAP dataset. (a)-(c) are three close-ups on 
Mimap_bim_00-02 respectively. In each close-up, we display the Lidar point 
cloud (yellow), our reconstruction result (grey) and the BIM line framework 
ground truth (red). In (a) and (b), the wall part in LiDAR point cloud is obvious 
missing and in (c) the ceiling part exists the missing areas, which affect the 
computation of error ep. Besides, we can see that in (a), the ceiling contour of 
the BIM line framework is slightly higher than most of the ceiling points in 
LiDAR point cloud, which affects the computation of error eg . 

Fig. 23. Data presentation on the Office dataset. The Office_MVS scene con-
tains lots of weak texture areas (e.g. white walls and glass walls in (a)), leading 
to many missing areas and noise in the MVS point cloud and MVS mesh (e.g. the 
area circled with red rectangle in (b) and the close-up in (c)), which make it 
more difficult to obtain a complete and accurate vectorized model. 
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Fig. 24. Reconstruction results on the Office dataset for our method, Polyfit, QEM, SAMD and VSA. For each subpart, the bottom row displays two close-ups. The 
number of facets of the final model n and the reconstruction running time(sec) t are also recorded. 

Fig. 25. 2D floorplan reconstruction results of ours and learning-based methods on evaluated datasets. In (a)-(h), from left to right, we display the density map of the 
point cloud, the result of our method, FloorNet and Floor-SP, respectively. 
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the protruding facade in Fig. 22(b). Consequently, in the future, we will 
aim to enhance the plane detection and floorplan generation using other 
available information such as images for MVS data. In addition, for 
generating the vectorized models closer to the real scenes, we will focus 
on detailing our LoD2 model to obtain a model with richer structures (e. 
g. LoD3). 
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