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Abstract—Consumer-level RGB-D cameras have been widely
used for dense 3D reconstruction of scenes. Especially for texture-
less or non-lambertian surfaces, consumer RGB-D cameras can
ensure completeness of the reconstructed models at a low cost.
However, the reconstruction quality relies heavily on the accuracy
of the depth sensors. Digital cameras are also used popularly for
capturing high-resolution pictures to achieve high-quality dense
reconstruction of the scenes, but cannot handle textureless or non-
lambertian regions well due to the visual ambiguity problem. To
ensure both completeness and accuracy of the reconstructed 3D
models, we propose a hybrid multi-view reconstruction pipeline
named Hybrid-MVS, which combines the high-resolution images
taken by a digital camera and the low-resolution RGB-D frames
captured by a consumer RGB-D camera for robust reconstruction
of complicated scenes with challenging textureless and non-
lambertian surfaces. Unlike most existing multi-sensor systems
which require explicit hardware calibration and synchronization
of various sensors, the calibration and synchronization problems
between the digital camera and RGB-D camera are implicitly
solved for compositing reliable depth prior of the digital images in
our pipeline. Especially, we propose a hybrid MVS framework for
robust PatchMatch stereo and Delaunay meshing, which tightly
couples both visual cues given by the digital images and depth
cues from the RGB-D frames to maximize the complementary
advantages. The experiments with quantitative and qualitative
evaluations demonstrate the effectiveness of the proposed Hybrid-
MVS framework, which can successfully achieve high-quality 3D
reconstruction of complicated natural scenes with robustness to
weakly textured and non-lambertian areas.

Index Terms—multi-view stereo, visual cues, depth cues, hybrid
MVS.

I. INTRODUCTION

3D reconstruction of large-scale scenes has attracted more
and more attentions due to its usefulness in providing 3D
digital content creation in a wide range of applications such
as scene understanding, 3D navigation, virtual reality (VR)
and augmented reality (AR). Commercial 3D scanners have
been invented to ensure high-quality 3D reconstruction, but
most commercial 3D scanners are too expensive to be pop-
ular to non-professional users because of their high costs.
Recently, hand-held scanners are more widely spread with
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consumer-level RGB-D cameras equipped, but the recon-
struction quality and scale degrades with the low-cost depth
sensors. Meanwhile, with the popularization of digital cam-
eras, it is becoming convenient to capture large numbers of
high-resolution photos of the real scenes. To achieve high-
quality 3D reconstruction with accurate geometric details, a
more feasible way is to perform multi-view stereo (MVS)
[6] on the captured high-resolution images, which has long
been a research topic of vital importance in computer vision
and photogrammetry. However, complete reconstruction with
high accuracy relies heavily on sufficient features extracted
from the images. Even with high-resolution images, scenes
with textureless or non-lambertian surfaces still bring great
challenges for MVS methods to achieve both completeness
and accuracy due to the visual ambiguity problem.

To ensure high-quality reconstruction of large-scale scenes
with both completeness and accuracy, we propose a hybrid
multi-view reconstruction system named Hybrid-MVS. Our
system combines a digital camera and a consumer RGB-D
camera to achieve robust reconstruction of challenging scenes
with textureless or non-lambertian surfaces. A PatchMatch-
based depth estimation method is applied to estimate high-
quality depth maps for the high-resolution images taken by
the digital camera, while the low-resolution RGB-D frames
captured by the consumer RGB-D camera are used to compos-
ite depth prior for the PatchMatch stereo. The combination of
the digital camera and the consumer RGB-D camera is much
easier to implement than the currently existing multi-camera
arrays [7], [8] or multiple in-place rotated unsynchronized
RGB-D cameras mounted on a robot platform [9]. However,
for the purpose of making full use of the depth measurements
for MVS, explicit calibration and synchronization of the two
devices are still inevitable. The calibration problem can be
solved using Camera Calibration Toolbox 1, but requires the
two devices to be rigidly fixed, which is not so friendly to
non-professional users. The hardware synchronization of the
two devices is a more difficult task even for professional and
technical users. To avoid the problems above, our system
provides a hybrid RGB-D alignment module which allows
users to individually capture multi-view digital images and
RGB-D frames of the scene, and automatically aligns them
together using an incremental Structure-from-Motion (SfM)
strategy. Moreover, unlike existing RGB-D reconstruction ap-
proaches based on geometry refinement such as [10], depth
enhancement by RGB-D fusion like [11], or 3D panorama

1http://www.vision.caltech.edu/bouguetj/calib doc/0000–0000/00$00.00 © 2021 IEEE
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Fig. 1. 3D reconstruction of the famous “Hu Qingyutang” Pharmacy since 1874, captured by a digital camera and an RGB-D camera. (a) Three representative
high-resolution images from the digital camera and RGB-D frames from the RGB-D camera. (b) The 3D model reconstructed by fusing depth measurements
from the RGB-D camera with Open3D [1], which lacks geometric details. (c) (d) (e) and (f) are the 3D models reconstructed by COLMAP [2], ACMMP [3],
OpenMVS [4] and DP-MVS [5] respectively on digital images and color channel of RGB-D frames, which preserve details but lose completeness on textureless
walls. (g) The 3D model reconstructed by our Hybrid-MVS taking both the digital images and RGB-D frames as input, which performs the best in accurate
geometric details and reconstruction completeness.

construction by [9], we propose hybrid PatchMatch stereo and
Delaunay triangulation, which tightly couples both visual cues
and depth cues to maximize their complementary advantages.
A reconstruction example of the famous cultural relics “Hu
Qingyutang” Pharmacy is shown in Fig. 1 which demonstrate
the better performance of our hybrid MVS framework in both
reconstruction completeness in textureless regions and accu-
rate geometric detail preserving in textured regions, compared
to the state-of-the-art (SOTA) MVS methods like Open3D [1],
COLMAP [2], ACMMP [3], OpenMVS [4] and DP-MVS [5].

To summarize, our Hybrid-MVS system makes the follow-
ing main contributions:

• We propose a hybrid multi-view reconstruction pipeline,
which combines a digital camera and a consumer RGB-
D camera to ensure complete and accurate reconstruction
robust to challenging scenes with texturelessness and non-
lambertian reflection.

• Unlike other RGB-D fusion methods, the proposed hybrid
MVS approach does not require explicit synchronization
and manual calibration of the two devices. It innova-
tively allows users to individually capture high-resolution
digital images and RGB-D frames, and aligns the two
kinds of data together automatically to avoid human
intervention.

• We propose a hybrid PatchMatch stereo approach, which
tightly couples both visual cues and depth cues for more
robust depth estimation with better completeness and
accuracy on textureless and non-lambertian surfaces.

• A novel Delaunay triangulation approach that combines
the fused point clouds from digital images and the depth
measurements captured by the RGB-D camera to generate
a complete and accurate surface mesh for textureless and
non-lambertian regions.

This paper is organized as follows. Section II briefly
presents related work. Section III gives an overview of the
proposed Hybrid-MVS system. The hybrid RGB-D alignment
and depth prior composition modules are described in sec-
tion IV and section V respectively. Section VI describes the

hybrid PatchMatch stereo framework, and section VII gives
the hybrid Delaunay meshing module. Finally, we evaluate
the proposed Hybrid-MVS pipeline in section VIII.

II. RELATED WORK

Most existing MVS approaches reconstruct 3D models from
multi-view images or video. According to the taxonomy given
in [12], we can divide these visual based MVS methods into
four categories: voxel based, surface evolution based, feature
growing based, and depth map merging based methods. The
voxel based methods extract a photo-consistent surface by
voxel coloring framework [13], graph-cut optimization [14],
or adaptive subdivision of multi-resolution 3D volume by
Sinha et al. [15]. These methods are limited by the voxel grid
resolution that vitally affects the reconstruction accuracy and
space, and they usually assume the compact objects have a
tight enclosing bounding box. The surface evolution based
methods such as [16]–[18] first make an initial surface guess
which is then evolved iteratively by minimizing the photo-
consistency measurement with variational mesh refinement.
A common drawback of the surface evolution based methods
is the difficulty to find a reliable initial surface, especially
for complicated scenes. Also, the surface evolution is easily
mislead by the ambiguous or mistaken photo-consistency
caused by textureless or non-lambertian areas. The feature
growing based methods like [19]–[21] firstly reconstruct 3D
feature points from regions with textures, and then expand
these feature points to textureless areas, by a region growing
process for features matched by per-view and per-pixel im-
age selection. However, these feature point growing methods
still suffer from the complicated computational complexity
for large-scale scenes. Additionally, the feature expansion is
limited to textured regions, leading to the difficulty in handling
textureless areas. The depth map merging based methods
such as [2], [22]–[28] estimate a depth map for each view,
after which all the depth maps are merged together to generate
one single model, with visibility taken into account. However,
these methods usually face the problem of computational
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efficiency for high-quality estimation. Zhang et al. [29] pro-
posed a real-time design for accelerating a binocular local
matching algorithm by parallel computing. Recently, some
works such as [30]–[32] leverage the time complexity of multi-
view stereo problem by adopting semi-global matching (SGM)
with hardware-efficient parallelism or pipelined architecture.
Some learning-based MVS reconstruction approaches such
as [33]–[39] are still limited in robustness and generalization
for natural scenes, although having made significant achieve-
ments on a variety of benchmarks. Generally, scenes with
textureless or non-lambertian surfaces still remains to be great
challenges for these visual based MVS methods to achieve
both completeness and accuracy.

With the development of consumer-level RGB-D cameras
such as Microsoft Kinect and Intel RealSense, some methods
incorporate depths with intensities to improve the reconstruc-
tion robustness and accuracy. These methods can also be
divided into three categories: depth fusion based methods,
depth enhancement based methods, and geometric refinement
based methods. The depth fusion based methods such as
KinectFusion [40], BundleFusion [41] and InfiniTAM [42] use
Iterative Closest Point (ICP) [43] to simultaneously track poses
of the input depth maps, and fuse all the tracked depths into a
global TSDF model. For example, Xiang et al. [44] present a
novel online 3D scanning system on a mobile device, which
utilizes adaptive voxel resized TSDF fusion for large object
reconstruction. Nevertheless, the reconstruction accuracy of
these methods depends heavily on the depth quality of the
RGB-D camera used as input. The depth enhancement
based methods like [11], [45]–[49] further improve the depth
resolution and quality of consumer RGB-D camera. Some
works [50]–[54] combine depth maps and images, which is
more similar to our hybrid PatchMatch stereo approach. How-
ever, these methods perform well based on a basic assumption
that depth discontinuities relate strongly to color discontinu-
ities, which is usually contradicted for challenging textureless
and non-lambertian cases. The geometric refinement based
methods like [10], [55]–[57] optimize the existing surface
model to refine the reconstruction directly. Most of these
methods refine the geometry according to multi-view photo-
consistency measurement. Therefore, their optimization results
are also easily affected by texturelessness and non-lambertian
surfaces. Li et al. [58] extend MVS pipeline by utilizing Lidar
data to help depth map estimation as well as mesh extraction,
which is more similar to our work. However, it simply uses
Lidar prior for PatchMatch initialization which cannot avoid
degradation of weakly textured or non-lambertian depths.

To better tackle challenging problems of textureless or non-
lambertian regions, some recent efforts have been made to
improve robustness and generalization by combining tradi-
tional MVS approaches with learning methods. For example,
Yang et al. [32] tackle noisy depth estimates produced by
SGM in textureless regions, using a lightweight depth re-
finement network. Yang and Jiang [59] achieve practical 3D
reconstruction for textureless scenes, by using deep learning
algorithms combined with traditional methods for feature
extraction and matching from light pattern augmented im-
ages. Stathopoulou et al. [60] leverage semantic priors to

PatchMatch-based MVS, which significantly improves the
depth map and normal map quality in challenging weakly
textured regions. However, even with the efforts above, it
still remains to be a challenge for 3D reconstruction of
large textureless indoor offices or non-lambertian buildings
which commonly occur in urban scenarios, with merely visual
information available.

Accurate depth map estimation is a vitally important and
challenging problem for a high-quality MVS reconstruction.
Recently, PatchMatch stereo methods [2], [61]–[69] have
been proved powerful in depth map estimation, which is the
key concern of a high-quality MVS reconstruction. Unlike
Zheng et al. [62] and COLMAP [2] which use the tra-
ditional sequential propagation scheme, Galliani et al. [63]
and Xu and Tao [70] utilize checkerboard propagation that
significantly improves computational parallelism to practically
reduce time complexity. As an extension to the work of
[70], ACMM [64] improves the depth quality in textureless
areas by incorporating a coarse-to-fine scheme. ACMP [67]
extends ACMM [64] by introducing the planar compatibility
to the matching cost aggregation in addition to photometric
consistency. ACMMP [3] further extends both ACMM [64]
and ACMP [67] by taking both multi-scale geometric consis-
tency and planar prior into consideration, and improves the
discrimination of visual ambiguity greatly. TAPA-MVS [65]
proposed novel hypotheses that expand reliable depths from
textured regions to neighboring textureless ones. Further-
more, Schönberger et al. [2], Xu and Tao [64] additionally
incorporate forward/backward reprojection errors for Patch-
Match. Besides, MARMVS [71] select the optimal patch scale
for each pixel in addition to reduce matching ambiguities.
UniMVSNet [39] propose a novel representation for more
generalized depth estimation, which unifies the advantages
of both regression and classification networks in a coarse-
to-fine framework. However, these methods focus on time
efficiency improvement or handling textureless reconstruction
with merely visual information, but seldom have any strategy
for joint optimization of visual and depth cues for more robust
PatchMatch, which is exactly the main focus of our method.

III. SYSTEM OVERVIEW

The user first takes M multi-view high-resolution digital
images of a scenes with a digital camera, which we denote as
I = {I1, I2, · · · , IM}. Then, a consumer-level RGB-D camera
is used to take a multi-view RGB-D video stream of the
scene. The video stream is decompressed to N low-resolution
RGB-D frames denoted as D = {D1, D2, · · · , DN}. The
video is required to cover enough scene content of the digital
images. In order to ensure this requirement, the acquisition
route and orientation of the RGB-D video stream should be
as consistent as possible with the digital camera, so that more
than 70% of the RGB-D frames are guaranteed to overlap
with at least one digital image which shares more than 30%
common view with viewing angle no more than 45°. Here, we
assume that the consumer-level RGB-D camera contains the
factory intrinsic parameters and relative extrinsic parameters
of the embedded color and depth sensors, based on which
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Fig. 2. System overview, which consists of a hybrid RGB-D alignment module for registering digital images and RGB-D frames together, a hybrid PatchMatch
stereo module which estimates high-quality depth maps and normal maps by tightly coupling photometric cues and depth cues, and a hybrid Delaunay meshing
module applied to separately fused point clouds from digital images and RGB-D frames to generate the final surface mesh.

the depth measurements are already aligned with the colors.
Our Hybrid-MVS system is applied for the input multi-view
digital images and RGB-D frames to robustly reconstruct an
accurate surface model of the captured scene. The steps of
the proposed Hybrid-MVS framework is outlined in Fig. 2.
A sparse map is reconstructed first to jointly register the
input digital images and RGB-D frames in a unified 3D
space with true scale using a depth-constrained incremental
SfM with scale recovery. Then, for each digital image, an
accurate high-resolution depth map is estimated by a hybrid
PatchMatch stereo approach, which combine the prior depth
map composited from the low-resolution RGB-D frames with
visual cues. After that, all the depth maps of digital images and
all the RGB-D frames are fused separately to two point clouds,
and a hybrid Delaunay meshing is applied to the two separate
point clouds to generate the final surface mesh represented as
S. The main steps of our framework will be described in detail
in the following subsections.

IV. HYBRID RGB-D ALIGNMENT

Our hybrid RGB-D alignment registers the digital images
and RGB-D frames together into a unified coordinate system
to perform a joint calibration for the intrinsic and extrinsic
parameters of the digital images I and the extrinsic parameters
of the RGB-D frames D. The hybrid RGB-D alignment
module consists of two major stages. The first stage is a
traditional incremental SfM proposed in [72] for digital images

to derive their intrinsic and extrinsic parameters. In the second
stage, the RGB-D frames are further registered into the SfM
result of the first stage, by applying a novel depth-constrained
incremental SfM scheme while recovering the true scene scale
based on the depth measurements.

Here we give a brief introduction to the ordinary SfM
pipeline in the first stage. SfM extracts a set of 3D map
points X ∈ R3 of the captured scene with consistently rich
features among the multiple input images, while solving the
intrinsic and the extrinsic parameters of the input images.
For each digital image Ii ∈ I, we denote its intrinsic and
extrinsic parameters as Ki and Mi = [Ri|ti] respectively,
with Ri and ti the rotation and translation parts of Mi.
The intrinsic parameters and extrinsic poses of the registered
images are optimized together with the 3D map points by
bundle adjustment (BA) [73] that minimizes the reprojection
errors defined as:

EBA =
∑

XK∈X

∑
xk
i

∥∥π(MiXK)− xk
i

∥∥2 (1)

with Mi being the the global-to-local transformation of image
Ii, and xk

i being a 2D feature in Ii corresponding to the 3D
map point XK . π(x, y, z) = (xz fu + cu,

y
z fv + cv) is the

projection position function, with (fu, fv) the focal lengths
in u and v directions, and (cu, cv) the optical center. Feature
correspondences with large errors are filtered out as outliers
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in our system. Fig. 3(c) show incremental SfM result of the
first stage, with all the digital images registered successfully.

In the second stage, the RGB-D frames are further registered
incrementally into the scene graph reconstructed in the first
stage. In our system, we use the vocabulary tree engine [74] to
find the most similar digital images for the new RGB-D frame
to match features. While registering a new RGB-D frame, the
intrinsic parameters and extrinsic poses of the digital images
are fixed as constants to ensure that the accuracy of SfM in
the first stage won’t be affected by the incoming consumer-
level RGB-D frames which usually contains color images with
much lower quality than the digital images.

To solve the scale recovery problem, we propose a novel
incremental SfM scheme for RGB-D frame registration, which
not only recover the true scale information, but also im-
prove the registration robustness by incorporating a depth-
constrained BA with scale adjustment. Fig. 3(e) shows the
result of our depth-constrained incremental SfM after the
second stage, which successfully registers the RGB-D frames
to the digital images, with true scale also recovered in the
meantime. We will give a detailed description of this RGB-D
incremental SfM approach in the following two subsections.

Fig. 3. (a) Three representative input high-resolution images of the “Sofa”
case from the digital camera. (b) Three representative low-resolution RGB-D
frames of the “Sofa” case from the RGB-D camera. (c) SfM result with only
the digital images registered, which is unable to recover the true scale. (d)
Hybrid SfM result with digital images (visualized with larger camera focal
length) and RGB-D frames (with smaller focal length) registered together
by scale adjustment and ordinary BA. (e) Hybrid SfM result with digital
images and RGB-D frames registered by the combination of scale adjustment
and depth-constrained BA, which optimizes the final intrinsic and extrinsic
parameters with better accuracy.

A. Scale adjustment

To refine the scale information, we collect a set of scale
candidates by computing the ratios between all the possible
depth measurements and their corresponding projection depths
on the RGB-D frames according to the registered intrinsic and
extrinsic parameters. The scale candidates are defined as:

S =

{
Di(π(MiXK))

d(MiXK)
| XK ∈ X , Di ∈ D

}
, (2)

where Di(π(MiXK)) represents the depth measurement at
the projection position of 3D map point XK on RGB-D frame
Di, while d(MiXK) is the projection depth of XK on Di.
We ignore the candidate scales for invalid depth measurements

, and select the average of the remaining candidate scales as
the final scale factor ∫ . The scale adjustment is carried out by
scaling the positions of the map points X and the translation
part of the extrinsic poses of all the registered images by ∫ ,
and applied before each time of BA, only if there are at least
100 scale candidates in our experiments. As can be seen in Fig.
3(c) and (d), the false scale of the ordinary SfM reconstruction
in the first stage is successfully recovered to the true size after
our scale adjustment strategy.

B. Depth-constrained Bundle Adjustment

As can be seen in Eq. (1), the ordinary BA [73] only
considers 2D reprojection errors. Since RGB-D frames D have
an additional depth measurement for each pixel, we extend Eq.
(1) to a more robust format by incorporating additional depth
projection errors as constraints in the following form:

E′
BA =

∑
XK∈X

∑
xk
i

(∥∥π(MiXK)− xk
i

∥∥2 +
α ∥d(MiXK)−Di(π(MiXK))∥2,

(3)

where Mi is the transformation matrix of RGB-D frame Di,
Di(π(MiXK)) is the depth measurement at the projection
position of XK on Di, d(MiXK) represents the projection
depth of XK on Di transformed by Mi, and α is the weight
of the depth constraints, which we empirically set to 100 in
the experiments. Again, we ignore the depth constraint for
invalid depth measurements. Since depth projection errors are
used as additional geometric constraints in BA, it is helpful
to improving the registration robustness when visual features
are insufficient or non-lambertian. Fig. 4 shows the results
of the depth-constrained BA compared with ordinary BA for
an indoor scene “Corridor” with both textureless and non-
lambertian regions. The ordinary BA causes severe pose drift
due to insufficient visual features as shown in Fig. 4(a), while
the depth-constrained BA leads to a continuous pose trajectory
without drift as can be seen in Fig. 4(b). Moreover, we also
evaluate the extrinsic parameter accuracies of ordinary BA
and depth-constrained BA by comparing the relative errors
between all depths estimated by our PatchMatch stereo using
the estimated extrinsic poses as in section VI and prior depths
composed from reference ToF measurements in section V as
ground truth (GT). As can be seen in Fig. 3(d) and (e), our
depth-constrained BA is helpful for a more accurate scale
adjustment with smaller extrinsic parameter error in Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE),
since it solves extrinsic parameters for the RGB-D frames with
higher depth consistency by minimizing the reprojection errors
defined in Eq. (3), so as to successfully suppress depth errors
of the scale candidates for a more accurate scale estimation.

After the two stages, our hybrid RGB-D alignment outputs
a sparse reconstruction of I and D, including intrinsic and
extrinsic parameters of all the digital images and RGB-D
frames with true scale.

V. DEPTH PRIOR COMPOSITION

After hybrid RGB-D alignment finishes, we composite a
novel depth map for each high-resolution digital image Ii ∈ I
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Fig. 4. (a) Incremental SfM result with digital images (with larger camera
focal length) and RGB-D frames (with smaller focal length) by ordinary
BA for case “Corridor”, where two successive RGB-D frames containing
textureless and non-lambertian surfaces are shown with severe drifting poses.
(b) Our hybrid SfM result by depth-constrained BA without pose drift.

as its depth prior. The novel depth maps are composited by
reprojecting the raw depth measurements of D to the views
of the digital images I according to the registered parameters
of the digital images and RGB-D frames. For each digital
image Ii, we select a number of reference RGB-D frames
from D for depth reprojection. The selected reference RGB-D
frames which are denoted as Rd(Ii) should have the most
similar field-of-view to Ii in order to provide more depth
measurements for depth composition. We measure the view
similarity between the digital images and the RGB-D frames
by computing a score between Ii and each Dj ∈ D as:

S(Ii, Dj) =
τa −min (ϕ(Ii, Dj), τa)

τa
·τd −min (δ(Ii, Dj), τd)

τd
,

(4)
where ϕ(Ii, Dj) measures the angle difference between the
viewing directions of Ii and Dj , and τa is an angle truncation
threshold which we set to 60°. δ(Ii, Dj) measures the distance
between the camera positions of Ii and Dj , and τd is the
corresponding distance truncation threshold which is assigned
as the 10% smallest distance of {δ(Ii, Dk)|Dk ∈ D} in
our experiments. The largest scored three RGB-D frames are
chosen as the reference frame set Rd(Ii).

Once the reference RGB-D frames are selected, the raw
depth measurements in Rd(Ii) are reprojected to the target
image Ii to composite the novel depth map D̂i. Since the
resolutions, intrinsic and extrinsic parameters of Ii and Dj ∈
Rd(Ii) may differ widely, a mesh rendering scheme is adopted
for depth reprojection to ensure completeness of the composite
depth map. For each depth d ∈ Dj at pixel x = (u, v),
we project it back to 3D space get a global 3D point by
P = Mj

−1ρ(u, v, d), where Mj is the global-to-local trans-

formation of frame Dj , and ρ(u, v, d) = (u−cu
fu

d, v−cv
fv

d, d) is
the back projection function. The projected 3D space points
are triangulated by the image pixel grid connection to build
a 3D surface mesh. We disconnect neighboring pixel depths
across depth boundaries to better handle occlusions caused by
depth discontinuity, with neighboring depth difference over 3%
of the absolute depth value as depth boundary. The 3D surface
mesh is rendered by the intrinsic parameters and extrinsic pose
of Ii to get a depth buffer in the target view with rendered
per-pixel depths as candidate depths for Ii. Since there are
more than one reference frames in Rd(Ii) reprojected, each
pixel in the digital image Ii might have a stack of several
candidate depths, which are averaged to get a final depth. All
the final depths composite a novel high-resolution depth map
for Ii, which is denoted as D̂i. Meanwhile, we compute a
corresponding normal map N̂i from the prior depth map D̂i.
Fig. 6(b) shows the composited depth maps and normal maps
of representative digital images from cases “Sofa” and “Horse
Head”. The novel high-resolution depth maps and normal
maps will be used as prior for our hybrid PatchMatch stereo
module in the following section.

VI. HYBRID PATCHMATCH STEREO

Although we already have a complete depth map for each
digital image, the composite depth maps turn out to be poor in
depth details and contain some noise due to the low-resolution
RGB-D frames from the consumer-level RGB-D camera, as
demonstrated in Fig. 5(b). To achieve a high-quality depth
map estimation with more accurate geometric details for each
digital image, a diffusion-like propagation based PatchMatch
scheme is applied, with the composite depth map as prior.
Existing sequential propagation strategies like COLMAP [2]
and OpenMVS [4] usually can produce depth maps with better
geometric details than the prior depth measurements from the
consumer RGB-D camera, but lose depth completeness in
textureless or non-lambertian areas, as can be seen in Fig. 5(c)
and (e). ACMMP [3] applies a coarse-to-fine checkerboard-
based propagation strategy to better handle textureless areas,
but still cannot ensure depth accuracy and completeness for
textureless or non-lambertian regions, as shown in Fig. 5(d).
To thoroughly settle the challenging problems of textureless or
non-lambertian regions for MVS, we propose a robust hybrid
PatchMatch stereo approach, which fully combines both the
visual cues and the prior depths of the high-resolution digital
images to achieve better reconstruction completeness and ge-
ometric accuracy for textured, textureless and non-lambertian
surfaces, as can be seen from our final depth estimation results
in Fig. 5(f). To better visualize the detailed improvement of
depth results, the multi-view depth maps by different methods
are fused to 3D surface models using our Delaunay meshing
method described in section VII. We quatitatively evaluate the
geometric completeness and accuracy on MAE and RMSE
(in millimeters) of the fused models for “Horse Head” by
comparing them to the GT model. As the evaluation shown
in Fig. 5, our hybrid PatchMatch stereo performs the best in
both accuracy and completeness.

A detailed pipeline of our hybrid PatchMatch method can
be seen in the “Hybrid PatchMatch Stereo” module of Fig.
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Fig. 5. (a) A representative digital image and its reference images for each case of “Sofa” and “Horse Head”, with the GT model of “Horse Head” given.
(b) The prior depth maps and normal maps of (a). (c) The depth maps and normal maps of (a) estimated by COLMAP [2]. (d) The depth maps and normal
maps by ACMMP [3]. (e) The depth maps and normal maps by OpenMVS [4]. (f) The depth and normal results by our hybrid PatchMatch stereo. The depth
maps by different methods are fused to 3D surface models using our Delaunay meshing method. We further evaluate the geometric completeness and accuracy
on MAE/RMSE of the fused models for “Horse Head” by comparing them to the GT model, to show the effectiveness of our hybrid PatchMatch in better
reconstruction accuracy and completeness.

2, which takes each digital image with its low-quality prior
depth map and a set of reference digital images as input,
and produces a high-quality depth map and normal map for
the current image, via a diffusion-like hybrid PatchMatch
scheme which tightly couples the photometric cues and depth
priors. Specifically, photometric consistency depth propagation
proposed by DP-MVS [5] is performed firstly to generate
the initial depth maps of digital images, whose erroneous
initial depths and normals are then filtered with geometric
consistency check. After that, each filtered depth map is filled
up with the prior depths to generate a hybrid depth map.
Similarly, the filtered normal map is also combined with the
prior normals to get a hybrid normal map. Finally, geometric
consistency guided PatchMatch is applied to acquire the final
high-quality depth map and normal map, which fully uses the
hybrid depth map and normal map as geometric constraints for
the propagation process, to ensure both depth completeness
and geometric accuracy. The entire PatchMatch stereo process
is summarized in Algorithm 1. More details will be given in
the following subsections to demonstrate the effectiveness of
this hybrid PatchMatch stereo approach.

A. Hybrid depth map and normal map initialization

The prior depth map and normal map is helpful to constrain
the depth propagation. However the prior depth map might
contain some noisy depths or lose details due to the low-
quality consumer RGB-D camera, which might to degrade
the depth quality. Considering the depth map generated with
photometric consistency measurement is more accurate and
more geometric details especially in the textured regions, we
combine the estimated depth map with the prior depth map to

Algorithm 1 Hybrid PatchMatch Stereo

Input: Digital image Ii, prior depth map D̂i and normal map N̂i

Output: Optimized depth map D∗ and normal map N∗

1: Photometric consistency depth propagation proposed by DP-
MVS [5] to obtain initial depth map and normal map for Ii

2: Geometric consistency check to filter erroneous initial depths
and normals for Ii

3: Fill up the filtered depth map with prior D̂i to get hybrid Dh
i

4: Fill up the filtered normal map with prior N̂i to get hybrid Nh
i

5: Geometric consistency guided PatchMatch with depth and nor-
mal constraints by Dh

i and Nh
i with Eq. (5) to acquire the

optimized depth map D∗
i and normal map N∗

i for Ii

generate a complete depth map, which we call hybrid depth
map and denote as Dh

i . The hybrid depth map is favorable to
maximize their complementary advantages by tightly coupling
the visual cues from the digital camera and depth cues from
the RGB-D camera. We use multi-view geometric consistency
check to filter out the errors of the initial depth map caused by
texturelessness and non-lambertian reflection. Specifically, for
each pixel x = (u, v) in Ii with its initial depth d estimated by
PatchMatch, we check its geometric consistency in a reference
image Ij ∈ R(Ii), by projecting it to Ij to get its projection
position by xj = π(MjM

1
i ρ(u, v, d)) with ρ(·) the back

projection function and π(·) the projection position function,
and projecting xj back to Ii to get a reprojection position x̂j

and its reprojection error ∥x̂j−x∥. If the average reprojection
error over all the reference images R(Ii) exceeds 3 pixels,
we consider the pixel x geometrically inconsistent and filter
its depth and normal out. Since the estimated depth map and
the prior depth map are in consistent 3D scale, we use the
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Fig. 6. Examplar effect of hybrid depth map and normal map initialization. (a) A representative digital image and its reference images for case “Sofa”. (b)
The prior depth map and normal map of (a). (c) The depth map and normal map by DP-MVS PatchMatch [5] with only photometric consistency costs. (d)
The hybrid depth map and normal map of (a). (e) The depth map and normal map estimated by our hybrid PatchMatch with (b) as initial constraint. (f) The
final depth map and normal map by our hybrid PatchMatch with (d) as constraint. The depth map results are fused to 3D surface models using our Delaunay
meshing method to show the effectiveness of our hybrid combination strategy in mesh details.

prior depths from D̂i to fill up the filtered depths to ensure
a complete depth map for Ii. The same completion strategy
is applied to the filtered normals to get a complete hybrid
normal map denote as Nh

i . An exemplar hybrid depth map
and normal map are shown in Fig. 6(d), which turn out to
have better geometric details preserved than the prior depth
map in Fig. 6(b), and fewer depth and normal errors than the
PatchMatch result in Fig. 6(c). We also verify the usefulness of
this hybrid combination strategy by comparing the final hybrid
PatchMatch result using the hybrid depth map and normal map
as constraints for geometric consistency guided propagation in
Fig. 6(f) and the corresponding result with only prior depths
and normals as constraints in Fig. 6(e), from which we can
see that our hybrid combination strategy is helpful to a better
recovery of the accurate geometric details in the final depth
map if there are geometric details lost or noisy depths in the
low-quality prior depth maps.

B. PatchMatch with hybrid depth and normal constraints

Now we present our hybrid PatchMatch propagation for Ii
with geometric consistency as guidance, which incorporates
the hybrid depth map Dh

i and the hybrid normal map Nh
i as

constraints. A simple way is to use the hybrid depth map and
hybrid normal map as reliable initial values for PatchMatch
propagation. We illustrate the result of this simple strategy in
Fig. 8(c), which shows its favorable improvement in depth
and normal accuracy of the textureless regions compared
with the PatchMatch result of DP-MVS [5] in Fig. 8(b), as
highlighted in the rectangles. However, this strategy is not
robust enough to avoid degeneration caused by textureless
or non-lambertian surfaces during PatchMatch propagation.
Therefore, we propose to further strengthen the guiding effect
of the hybrid depth map Dh

i and the hybrid normal map
Nh

i during the propagation process. Specifically, for each
hypothesis xp in Ii, we add a depth weight and a normal

weight to its accumulated multi-view cost as follows:

wd(xp) = 1− λdexp
(
− (Di(xp)−Dh

i (xp))
2

σ2

)
wn(xp) = 1− λnexp

(
− (1−⟨Ni(xp)·Nh

i (xp)⟩)2
σ2

)
C∗(xp) = wd(xp)wn(xp)C(xp),

(5)

where C∗(xp) is the weighted cost of the ordinary multi-
view cost C(xp). λd and λn are balance factors for depth
weight and normal weight respectively, which is set to 0.4
and 0.53 in the experiments to make a trade-off between
the prior and multi-view cost. σ = 1 − λcexp (− |Ivi (xp)|)
is a coefficiency proportional to the color covariance Ivi (xp)
computed from the 11×11 image patch centered at xp, where
λc is the weighted term of Ivi (xp), and is set to 0.8 in the
experiments. Intuitively, the smaller σ is, the larger influence
the depth and normal weights impose on the accumulated
multi-view cost to guide the optimization towards the prior
depth and normal, which is exactly the situation of textureless
regions. In contrast, for textured regions, the photometric cost
is strong enough, so that there is no special need for guiding
weights. Therefore, a larger σ suppresses the weight influence
on the multi-view cost. Here Di(xp) and Ni(xp) represents
the currently updated depth and normal values of xp during
the propagation. The weighted multi-view costs are used
for PatchMatch propagation instead of the ordinary ones, to
achieve a high-quality depth map and normal map estimation
for each digital image Ii, which we denote as D∗

i and N∗
i .

For textureless or non-lambertian regions, the photometric
costs for various depths and normals are non-discriminative,
resulting in noisy depths and normals. In comparison, this
depth and normal weighting cost scheme helps to eliminate
the depth and normal ambiguity, leading to noise-free depth
maps and normal maps. Specifically, if the depth and normal
of a hypothesis are close to the prior depth and normal, the
weighted cost decreases to a small value, which encourages
the propagation to choose this depth and normal hypothesis.
In this way, the depth and normal optimization trends not too
far away from the hybrid depths and normals. For textured
lambertian regions, the weight influence is suppressed, so that
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Fig. 7. (a) The surface meshes of cases “Sofa” and “Horse Head” extracted from the fused point cloud of digital images, with GT model of “Horse Head”
given. (b) The surface meshes extracted from the fused point cloud of RGB-D frames. (c) The surface meshes extracted from the combination of point clouds
from both the digital images and the RGB-D frames. (d) The surface meshes extracted by our hybrid Delaunay meshing of point clouds from both the digital
images and the RGB-D frames. We evaluate geometric completeness and accuracy on MAE/RMSE for all the surface meshes of “Horse Head” compared to
its GT model to show the effectiveness of our hybrid Delaunay meshing in preserving geometric details and completeness.

the discriminative costs from high-resolution digital images
are preserved as much as possible to recover the depth and
normal details.

VII. HYBRID DELAUNAY MESHING

After we have an optimized high-quality depth map D∗
i

and normal map N∗
i for each digital image, all the depths are

projected back to 3D space to get a set of 3D points with
normals. The 3D points of all the digital images are fused
together to a point cloud we denote as Pc. Each 3D point
inside Pc contains the set of digital images where it has been
triangulated and visible. The depth map fusion is carried out
in a similar way to the graph-based framework proposed in
[2]. According to the depth and geometry consistency among
different image views, the consistent pixels are connected
recursively during the fusion process. Meanwhile, the depth
maps {Dj ∈ D} of all the RGB-D frames captured by the
RGB-D camera are also fused in the same way to a point cloud
denoted as Pd. Both Pc and Pd participate in a Delaunay
meshing method to reconstruct the final surface mesh of the
scene.

A detail-aware 3D Delaunay triangulation similar to DP-
MVS [5] is applied to the point clouds to build tetrahedra
T, which are then labeled inside or outside the surface
through an graph-cuts based energy minimization. Let L
denote the labeling. For each tetrahedron τ ∈ T, we have
L(τ) ∈ {inner, outer}. Let F denote the set of facets shared
by two neighboring tetrahedra. We define the energy function

for inside/outside labeling problem of tetrahedra T as:

E(T,F,L) =
∑
τ∈T

Ed(τ,L(τ)) +
∑
f∈F

Es(f,L(τ),L(τ
′)),

(6)
where Ed is the data term for tetrahedron τ , and Es is the
smooth term for triangular facet f shared by each pair of
neighboring tetrahedra (τ, τ ′). The facets shared by neighbor-
ing tetrahedra with different labels compose the final surface
mesh.

For our case, a straightforward way is to simply combine
Pc and Pd as input for Delaunay triangulation. However,
the point cloud Pc from digital images usually have more
accurate structures and more geometric details than Pd from
the consumer RGB-D camera, while Pd usually has higher
completeness of the scene than Pc due to its higher frame
frequency, as can be seen in Fig. 7(a) and (b). Besides, there
might exist misalignment between Pc and Pd. Therefore,
straightforward combination of Pc and Pd might cause ar-
tifacts and more geometric noise in the final surface mesh,
as shown in Fig. 7(c). To better preserve the geometric accu-
racy and the reconstruction completeness of the final surface
model, Pc should have higher priority than Pd during the
Delaunay meshing process. We propose to extend the meshing
strategy proposed in [5], by accumulating the data terms and
smooth terms for the shooting line of sight of each 3D point
P ∈ Pc ∪Pd as follows:

Ed(τv, inner) + = αv(P )
Ed(τp, outer) + = αv(P )
Es(fi, inner, outer) + = ωfiαv(P )
Es(fi, outer, inner) + = ωfiαv(P )
ωfi = ωh(fi)ωd(fi)ωv(fi)ωq(fi),

(7)
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Fig. 8. Examplar effects of depth and normal constraints on hybrid PatchMatch stereo. (a) A representative digital image and its reference images for each
case of “Sofa” and “Horse Head”, and GT model of “Horse Head”. (b) The depth maps and normal maps estimated by DP-MVS [5]. (c) The estimated depth
maps and normal maps with only the hybrid depth map as constraint. (d) The depth maps and normal maps with only the hybrid normal map as constraint.
(e) The final depth maps and normal maps by our hybrid PatchMatch stereo with both depth and normal constraints. All the depth map results are fused to
3D surface models using our Delaunay meshing method, with the geometric completeness and accuracy on MAE/RMSE of the fused models evaluated for
“Horse Head” by comparison to the GT model to show the effectiveness of depth and normal constraints in completeness and mesh details.

where τv is the tetrahedron that the center of a camera Ci lies
in, and τp is the tetrahedron that contains P and intersects
with the extended line of sight from Ci. αv(P ) is the unity
confidence value for each ray from Ci to P , which is set
differently for 3D points from Pc and Pd. For each 3D
point P ∈ Pc, we set αv(P ) to a higher value 1 in the
experiments, while for each P ∈ Pd we set αv(P ) to a smaller
confidence 0.2, so as to keep the 3D points produced by our
hybrid PatchMatch stereo dominant in order to preserve the
geometric details not to be degraded by the low-quality depth
measurements from the consumer RGB-D camera. ωv , ωq , ωd

and ωh denote the visibility weight, quality weight, density
weight and hybrid weight respectively for smooth term penalty.
Previous methods like [75] only use ωv and ωq , which has
limitation in preserving geometric details. DP-MVS [5] uses
ωd to enforce the accuracy of surface geometry. In comparison,
we propose this novel hybrid weight ωh to account for the
different vertex combinations of digital images and RGB-D
frames. We examine the three vertices of each tetrahedron’s
facet fi to determine ωh(fi). Facets with three vertices all from
Pc are more preferred with a small hybrid weight ωh(fi) = τc,
with higher probability to composite the final surface with
better geometric details. Facets with three vertices all from Pd

have a larger hybrid weight ωh(fi) = τd, with lower probabil-
ity to become the final surface. Facets with vertices from both
Pc and Pd are considered not so confident, and are therefore
penalized with the largest hybrid weight ωh(fi) = τh with
highest probability to disappear to avoid noise interference.
According to the quality difference between Pc and Pd, we

empirically set the parameters τc = 0.4, τd = 0.8, τh = 1.0
in our experiments. Considering that the point cloud accuracy
from consumer RGB-D camera is generally lower than that
from digital images, these coefficiency settings are general for
common cases. In this way, the 3D points from Pc and Pd can
be coherently merged to avoid possible reconstruction noise
caused by misalignment while keeping the reconstruction
accuracy and completeness in the final surface model.

Fig. 7(d) gives the final surface mesh produced by our
hybrid Delaunay meshing approach. Compared to the result
of the simple combination strategy shown in Fig. 7(c), it can
be seen that the proposed hybrid meshing faithfully preserve
better geometric accuracy and reconstruction completeness, by
taking the complementary advantages of both point clouds
from the digital images and the RGB-D frames. For case
“Horse Head”, we also quantitatively compare the geometric
completeness and accuracy on MAE and RMSE of the surface
meshes, which demonstrates that our method performs the best
in both completeness and accuracy.

VIII. EXPERIMENTS

In this section, we perform evaluation of our Hybrid-MVS
pipeline, whose core algorithms are implemented in C++, on
our experimental benchmark including eight cases, each of
which is composed of multi-view digital images captured by
Canon 850D camera with 6000× 4000 image resolution, and
RGB-D video stream captured by Kinect V2 with 2048×1536
image resolution and 640 × 576 depth resolution in 30FPS
decompressed in 6FPS. Each case in the benchmark typically
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Fig. 9. Qualitative evaluation of our Hybrid-MVS pipeline on the cases “Corridor”, “Qianjiang Century Park”, “Dolls”, “La Marseillaise” and “Front Desk”.
(a) Some representative source digital images and RGB-D frames for each case, with GT models of “Dolls” and “La Marseillaise” given. (b) The reconstructed
surface models by COLMAP [2] with digital images and color channel of RGB-D frames. (c) The reconstructed surface models by ACMMP [3] with the same
input as (b). (d) The reconstruction results by OpenMVS [4] with the same input as (b). (e) The reconstructed results by DP-MVS [5] with the same input as
(b). (f) The reconstruction results by Open3D [1] with only the RGB-D frames. (g) The 3D surface models reconstructed by our Hybrid-MVS pipeline with
only the RGB-D frames, which preserves the detailed structures and completeness better than (f). (h) The reconstructed surface models by Hybrid-MVS with
both the digital images and the RGB-D frames, which performs the best in both reconstruction completeness and geometric details. Some detailed structures
are highlighted in the rectangles to show the effectiveness of our proposed method.

TABLE I
EVALUATION OF RECONSTRUCTION ACCURACY (MAE AND RMSE IN MILLIMETERS) AND COMPLETENESS FOR COLMAP [2], ACMMP [3],

OPENMVS [4], DP-MVS [5] WITH BOTH DIGITAL IMAGES AND COLOR CHANNEL OF RGB-D FRAMES, OPEN3D [1] WITH ONLY RGB-D FRAMES, OUR
HYBRID-MVS WITH ONLY RGB-D FRAMES, AND HYBRID-MVS WITH BOTH DIGITAL IMAGES AND RGB-D FRAMES, ON THE CASES “LA

MARSEILLAISE”, “HORSE HEAD” AND “DOLLS”.

Cases Evaluation COLMAP with ACMMP with OpenMVS with DP-MVS with Open3D Hybrid-MVS Hybrid-MVS with
digital images digital images digital images digital images with RGB-D with RGB-D digital images

& RGB-D colors & RGB-D colors & RGB-D colors & RGB-D colors frames frames & RGB-D frames
La Marseillaise MAE/RMSE(mm) 1.738/3.220 1.340/1.963 1.317/2.410 1.677/3.079 7.269/8.992 2.966/3.603 1.246/1.729

completeness 92.68% 99.48% 97.31% 93.52% 97.49% 98.94% 99.84%
Horse Head MAE/RMSE(mm) 3.986/5.298 1.877/2.784 1.849/2.923 2.837/4.491 18.911/24.336 2.979/3.352 1.758/2.248

completeness 82.91% 97.90% 96.18% 83.62% 94.67% 99.37% 99.83%
Dolls MAE/RMSE(mm) 2.360/3.887 2.035/3.135 1.902/2.688 2.241/3.621 3.651/4.849 3.014/4.168 1.814/2.568

completeness 96.14% 97.85% 99.39% 97.06% 98.34% 98.51% 99.82%

TABLE II
DETAILED COMPUTATION TIME OF HYBRID-MVS PIPELINE IN ALL THE STEPS OF CASES “SOFA”, “HORSE HEAD” AND “HU QINGYUTANG” IN MINUTES.

Cases #Digital Images/ Hybrid RGB-D Hybrid Fusion Hybrid Delaunay Total
#RGB-D Frames Alignment PatchMatch Meshing

Sofa 41/357 14.223 11.985 11.805 17.651 55.664
Horse Head 97/523 29.791 25.549 34.926 30.743 121.009

Hu Qingyutang 476/369 56.273 98.709 76.344 72.069 303.395

contains some textured regions with geometric details, and
some textureless or non-lambertian surfaces. We first exhibit
ablation studies on hybrid depth and normal constraints of our
PatchMatch stereo. Quantitative and qualitative comparisons of
our work to the SOTA methods are then reported to show that
our Hybrid-MVS achieves the best reconstruction accuracy
and completeness on the detailed structures, textureless regions
and lambertian surfaces of the scenes in the benchmark.
We also report the time consumption on the stages of SfM,
PatchMatch, fusion and meshing of different methods to show
the time efficiency of our method.

A. Ablation studies of hybrid PatchMatch stereo

We perform ablation studies to validate the effects of depth
and normal constraints on our hybrid PatchMatch stereo by
using only one kind of constraint at a time. Fig. 8(e) shows the
final depth maps and normal maps of our hybrid PatchMatch
with both depth and normal weights as constraints, which
performs the best in depth and normal accuracy, complete-
ness and geometric details in the textureless desk and non-
lambertian flowerpots, compared to the estimated depth maps
and normal maps with only depth weight as constraint in Fig.
8(d) and the results with only normal constraint in Fig. 8(c). To
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better visualize the detailed improvement, the multi-view depth
maps by different ablation studies are fused to 3D surface
models using our Delaunay meshing method of section VII.
The geometric completeness and accuracy on MAE and RMSE
are also evaluated for the fused models of “Horse Head”.
From the evaluation shown in Fig. 8, we can see that both
depth constraint and normal constraint are helpful to the
improvement of depth accuracy, and the combination of the
two kinds of constraints can further improve the reconstruction
completeness.

B. Qualitative and quantitative evaluations

Fig. 1 and 7 have already demonstrated the reconstructed 3D
models of cases “Hu Qingyutang”, “Sofa” and “Horse Head”
in details. Other five cases “Corridor”, “Qianjiang Century
Park”, “Dolls”, “La Marseillaise” and “Front Desk” of our
benchmark are shown in Fig. 9, each of which contains some
textureless or non-lambertian areas. The case “Corridor” is a
relatively large-scale indoor office with textureless and non-
lambertian walls. We first give the qualitative comparisons
with other SOTA MVS methods including COLMAP [2],
ACMMP [3], OpenMVS [4] and DP-MVS [5] in Fig. 9(b), (c),
(d) and (e). Since only RGB images are supported by these
SOTA works, we use the digital images and color channel
of the RGB-D frames for them to reconstruct 3D meshes.
From the details of the reconstructed surface meshes, we can
see that our Hybrid-MVS can extract more complete surface
structures on the low-textured desks and walls of “La Mar-
seillaise” and “Corridor”, and the front desk and billboard of
“Qianjiang Century Park” which are both textureless and non-
lambertian surfaces, while COLMAP and OpenMVS cannot
ensure the reconstruction completeness or geometric accu-
racy on the textureless and non-lambertian regions with their
sequential PatchMatch propagation strategy. The 3D models
reconstructed by DP-MVS contain more geometric details but
cannot ensure reconstruction completeness on the textureless
desks and walls and the non-lambertian front desk even with its
diffusion-like propagation strategy. ACMMP performs better
than COLMAP, OpenMVS and DP-MVS in reconstruction
completeness due to its multi-scale framework and planar
priors through triangulation, but still cannot handle textureless
and non-lambertian surfaces so well as our approach. Since
Open3D [1] only support one source RGB-D video stream, we
also qualitatively compare the surface mesh reconstructed by
Open3D [1] with only the RGB-D frames, the reconstruction
result by our Hybrid-MVS with only RGB-D frames, and the
result by Hybrid-MVS with both digital images and RGB-D
frames as input in Fig. 9(f), (g) and (h). It can be seen from the
reconstructed surface mesh details that the results from RGB-
D frames by Open3D can ensure reconstruction completeness,
but lose detailed structures on the sculpture and chair legs, or
lack global structural consistency on the large-scale “Corridor”
and “Qianjiang Century Park” due to its local ICP tracking,
which are highlighted in the rectangles. Especially, the recon-
struction completeness of “Qianjiang Century Park” is severely
affected by the invalid depths caused by the outdoor sunlight.
In comparison, our Hybrid-MVS with only RGB-D frames

can preserve more accurate geometric details without losing
completeness, and even complete the missing structures caused
by invalid prior depths, while Hybrid-MVS with both digital
images and RGB-D frames further ensures both the complete
surface structures in textureless or non-lambertian regions and
the geometric details of the textured regions.

We further provide quantitative evaluation on the three cases
“Horse Head”, “Dolls” and “La Marseillaise” which contain
GT models scanned by EinScan Pro 2X PLUS digital 3D
scanner for evaluation of reconstruction accuracy on both
MAE and RMSE, and reconstruction completeness. We use
CloudCompare 2 to compare the reconstructed meshes with
GT. To evaluate the accuracy of a reconstructed mesh, we
first align the mesh with the GT model manually and refine
its transformation by ICP fine registration. Then we com-
pute point-to-plane distance between the reconstructed mesh
and GT. These routines are achieved with CloudCompare’s
built-in functions to produce MAE, RMSE and complete-
ness. We evaluate the accuracy and completeness of the
reconstructed surface models by COLMAP [2], ACMMP [3],
OpenMVS [4], DP-MVS [5] with digital images and RGB-D
frames, Open3D [1] with only the RGB-D frames, our Hybrid-
MVS with only RGB-D frames, and Hybrid-MVS with both
the digital images and the RGB-D frames. From the model
accuracy and completeness evaluation in Table I, we can see
that our Hybrid-MVS reconstructs the scene models with a
millimeter-level accuracy, which turns out to be the best in
MAE, RMSE and completeness, compared to all the other
approaches. Note that even with only RGB-D frames, Hybrid-
MVS can still produce more accurate and complete surface
models than Open3D, which verifies the usefulness of our joint
optimization of visual and depth cues.

C. Time statistics

Table II gives the time statistics of our pipeline on three
typical cases: two indoor examples “Sofa” and “Horse Head”
and one outdoor case “Hu Qingyutang”. The experiments
are conducted on a server platform with two 10-Core Intel
Xeon Silver 4114 CPUs @ 2.2GHz, eight GeForce 1080Ti
GPUs, and 250GB memory. The hybrid RGB-D alignment,
fusion and hybrid Delaunay meshing modules run on CPUs,
while the hybrid PatchMatch propagation is speeded up by
GPU parrallism. Note that the time consumptions of hybrid
RGB-D alignment, fusion and hybrid Delaunay meshing is
proportional to the numbers of digital images and RGB-D
frames, and the hybrid PatchMatch stereo step is proportional
to the number of digital images. Even for the large-scale
outdoor scene ‘Hu Qingyutang”, our Hybrid-MVS can also
achieve high-quality 3D reconstruction in a time-efficient way.

IX. CONCLUSION AND FUTURE WORK

In this work, we propose a hybrid MVS pipeline, which
combines a digital camera and a consumer RGB-D camera
to achieve a complete and accurate 3D reconstruction. Both
visual cues from the digital camera and depth cues from

2http://cloudcompare.org
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the RGB-D camera are tightly coupled to maximize their
complementary advantages for more robust PatchMatch stereo
and Delaunay meshing to ensure complete reconstruction in
textureless and non-lambertian regions, while preserving accu-
rate geometric details in textured regions. The effectiveness of
the proposed Hybrid-MVS framework for indoor and outdoor
scenes is validated in our experiments.

Although the combination of digital camera and RGB-D
camera can help improving the reconstruction quality and
robustness, it is still not so convenient for a non-professional
user to take multi-view digital pictures of a large-scale scene.
How to combine more convenient capturing devices like
360 panoramic camera with RGB-D cameras to reduce the
data capturing requirements is a problem worth studying in
future. Besides, some more complicated scenes with severe
repetitive textures or varying illuminations might influence
the hybrid RGB-D alignment, thereby affecting the final 3D
reconstruction results. Moreover, our method relies on the
depth quality of the acquisition device, and therefore benefits
little when the acquired depth correctness or completeness
cannot be guaranteed. It remains to be a future work for us
to jointly take these problems into consideration to develop a
more robust and practical multi-view reconstruction system.
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